• Title/Summary/Keyword: Residual tensile load

Search Result 86, Processing Time 0.029 seconds

Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints (세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포)

  • 박영철;허선철;윤두표;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Improving the Residual Stress Characteristics of the Metal Surface by Nd:YAG Laser Shock Peening (Nd:YAG 레이저 충격 피닝에 의한 금속표면의 잔류응력 특성 개선)

  • Yang, Se-Young;Choi, Seong-Dae;Jun, Jea-Mok;Gong, Byeong-Chae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.539-547
    • /
    • 2010
  • Laser shock peening is useful to improve fatigue characteristic of multiple number of metals and alloys. This process induces a compressive residual stress on the metal surface, and when tensile load is applied, growth of crack is delayed and which changes the characteristic of the metal surface. It is an innovative surface treatment technique for strengthening metals. Specimens of SM45C are used in this study. The effect of an inertial tamping layer on the residual stress field using laser shock peening setup and Nd:YAG laser power is evaluated. Residual stress distribution measured by X-ray diffraction. As a result of this study it can be presented that following condition of Nd:YAG laser power and inertial tamping layer parameters, compressive residual stress is generated on the surface of the SM45C. Results to experimental data indicate that laser shock peening has great potential as a means of improving the mechanical performance of the metal surface.

Evaluation of Wheel Load Fatigue Performance of FRP-Concrete Composite Deck (FRP-콘크리트 합성 바닥판의 윤하중 피로 성능 평가)

  • Cho, Keun-Hee;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.38-41
    • /
    • 2006
  • Wheel load fatigue experiment is carried out on a FRP-concrete composite deck. In FRP-concrete composite deck, FRP plays a role of a main tensile member as well as a permanent formwork and concrete plays a role of a main compressive member. Wheel load fatigue experiment, which shows more realistic behavior than pulsating fatigue experiment, is selected as a fatigue performance evaluation method. Until 1,000,000 cycles of loadings, load resistant performance is maintained without any loss, while residual deflection is increased.

  • PDF

A model of fatigue crack growth based on plastic stretch at the crack tip (균열선단의 소성스트레치를 이용한 피로균열성장모델)

  • Ju, Yeong Sik;Kim, Jae Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.

Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials (철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정)

  • Yu S.J.;Kim J.H;Park J.S.;Kwon D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

Residual Strength of Fiber Metal Laminates After Impact (충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구)

  • Nam, Hyun-Wook;Lee, Young-Tae;Jung, Chang-Kyu;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial (비파괴적 연속압입시험: 대형구조물로부터 nano소재까지의 응용연구)

  • Jeon, Eun-Chae;Kwon, Dong-Il;Choi, Yeol;Jang, Jae-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.333-346
    • /
    • 2002
  • The continuous indentation techniques are one of the most effective methods to nondestructively estimate mechanical properties. There are many applications in various dimensions of materials from macro-scale, through micro-scale, even to nano-scale range. The macro-range technology of kgf-load level is now focused on the evaluation of tensile properties and residual stress of bulk materials, for example, used in conventional load-bearing structures and in-use pipelines. The technology and the apparatus were successfully developed by a domestic research group. The micro-range technology of gf-load level can be applied to investigate some property-gradient materials such as weldment. Because it has better spatial resolution than the macro-range technology. The nano-range technology (called nanoindentation technique) of mgf-load level is basically used to evaluate hardness and modulus of micro- and nano-materials. Moreover, many researches are going on to measure tensile properties and residual stress. The nanoindentation technology is easy to be applied to the various fields, such as semiconductor devices, multiphase materials, and biomaterials, though other methods are too difficult to be applied due to dimensional or environmental limitations. On the basis of these accomplishments, the international and the domestic standards are being established.

Recycled Concrete Aggregates: A Review

  • McNeil, Katrina;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • This paper discusses the properties of RCA, the effects of RCA use on concrete material properties, and the large scale impact of RCA on structural members. The review study yielded the following findings in regards to concrete material properties: (1) replacing NA in concrete with RCA decreases the compressive strength, but yields comparable splitting tensile strength; (2) the modulus of rupture for RCA concrete was slightly less than that of conventional concrete, likely due to the weakened the interfacial transition zone from residual mortar; and (3) the modulus of elasticity is also lower than expected, caused by the more ductile aggregate. As far as the structural performance is concerned, beams with RCA did experience greater midspan deflections under a service load and smaller cracking moments. However, structural beams did not seem to be as affected by RCA content as materials tests. Most of all, the ultimate moment was moderately affected by RCA content. All in all, it is confirmed that the use of RCA is likely a viable option for structural use.

Effects by Applying Mode of Single Overload on Propagation Behavior of Fatigue Crack (단일과대하중의 작용모드가 피로균열의 전파거동에 미치는 영향)

  • 송삼홍;이정무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.109-116
    • /
    • 2004
  • In this study, when variable-amplitude load with various applying mode acts on the pre-crack tip, we examined how fatigue cracks behave. Hence aspects of the deformation caused by changing the applying mode of single overload and propagation behavior of fatigue crack were experimentally examined: What kinds of the deformation would be formed at pre-crack and its tip\ulcorner What aspects of the residual plastic deformation field would be formed in front of a crack\ulcorner How aspects of the plastic zone could be evaluated\ulcorner As applying mode of single overloading changes, the deformation caused by tensile and shear loading variously showed in each applying mode. The different aspects of deformation make influence on propagation behavior of cracks under constant-amplitude fatigue loading after overloading with various modes. We tried to examine the relationship between aspects of deformation and fatigue behavior by comparing the observed deformation at crack and crack propagation behavior obtained from fatigue tests.