• 제목/요약/키워드: Residual salt separation

검색결과 10건 처리시간 0.022초

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

Residual salt separation technique using centrifugal force for pyroprocessing

  • Kim, Sung-Wook;Lee, Jong Kwang;Ryu, Dongseok;Jeon, Min Ku;Hong, Sun-Seok;Heo, Dong Hyun;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1184-1189
    • /
    • 2018
  • Pyroprocessing uses various molten salts during electrochemical unit processes. Reaction products after the electrochemical processes must contain a significant amount of residual salts to be separated. Vacuum distillation is a common method to separate the residual salts; however, its high operation temperature may cause side reactions. In this study, a simple rotation technique using centrifugal force was suggested to separate the residual salts from the reaction products at relatively low temperature compared to the distillation technique. When a reaction product container with porous wall rotates inside a vessel heated above the melting point of the residual salt, the residual salt in the liquid phase is separated through centrifugal force. It was shown that the $LiNO_3-Al_2O_3$ mixture can be separated by this technique to leave solid $Al_2O_3$ inside the container, with a separation efficiency of 99.4%.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 춘계학술논문요약집
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

Preparation of activated carbon incorporated polysulfone membranes for dye separation

  • Ingole, Pravin G.;Sawant, Sandesh Y.;Ingole, Neha P.;Pawar, Radheshyam R.;Bajaj, Hari C.;Singh, Kripal;Cho, Moo Hwan;Lee, Hyung Keun
    • Membrane and Water Treatment
    • /
    • 제7권6호
    • /
    • pp.477-493
    • /
    • 2016
  • Immediate use of activated carbon incorporated polysulfone membrane application for dye separation was reported in this work. Dimethylformamide (DMF) was used as the solvent for the membrane preparation. The membrane thus prepared were characterized in terms of surface morphology, ATR-FTIR, AFM, experimental results as membrane performance. The resultant nanofiltration (NF) membranes were tested with Congo red dye concentration 200 mg/L. The water permeability was found to be considerably higher than that reported in literature. Experimental results show that the real rejection of the Congo red is 99.57% over the transmembrane pressure 100 psi using 30% activated carbon incorporated membrane. Prepared NF membranes shows the corresponding permeates fluxes were $40Lm^{-2}h^{-1}$ to $82Lm^{-2}h^{-1}$ with different activated carbon percentage incorporated in polysulfone membrane. The present study demonstrated that dye rejection enhanced NF may be a feasible method for the dye wastewater treatment. The overall observations thus indicated that toxic residual dyes can be appreciably separated from the membrane technology, provided that the accompanying polymeric membrane, activated carbon as binding agents and the process parameter levels are astutely selected.

전해환원공정 관련 후처리공정 - 금속전환체 Smelting 및 용융염 고화 (Post Process Associated with the Electrochemical Reduction Process - Smelting of a Metal Product and Solidification of a Molten Salt)

  • 허진목;정명수;이원경;조수행;서중석;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.278-284
    • /
    • 2004
  • 전해환원공정에서 발생하는 금속전환체와 용융염을 각각 smelting하고 고화시키는 공정을 개발하였다. 진공조건에서 다단계 가열에 의하여 마그네시아 용기에 담긴 금속전환체를 잔류 용융염과 분리하고 용융시켜 금속 잉곳을 제조하는 운전방법을 제시하는 한편, 금속전환체의 분석을 수행하였다. 전해환원 공정에서 감압이송된 용융염의 경우에는 이송과 계량에 적합하게 이중 용기와 염밸브를 사용하여 일정 형상과 크기로 고화하는 신개념을 도출하였다. 본 연구의 결과는 한국원자력연구소 Advanced Spent Fuel Conditioning Process의 hot cell 실증시스템 설계에 적용되었다.

  • PDF

희토류 침전물로부터 LiCl-KCl 공융염의 증류 분리에 관한 기초연구 (Fundamental Study on a Distillation Separation of a LiCl-KCl Eutectic Salt from Rare Earth Precipitates)

  • 양희철;은희철;김인태
    • 방사성폐기물학회지
    • /
    • 제8권1호
    • /
    • pp.65-70
    • /
    • 2010
  • 비등온 및 등온조건에서의 열중량분석을 이용하여 다양한 압력조건(0.5 - 50 mmHg)에서 LiCl-KCl 공융염 증류속도를 우선 측정하였다. 비등온조건에서의 열중량분석결과로부터 온도의 함수로 표현될 수 있는 증류 속도식을 도출하였다. 이 속도식에 의해 계산된 휘발플럭스(flux)는 등온조건에서의 열중량분석을 통해 얻어진 증류속도와 일치하였다. 1300 K 이하의 온도조건과 0.5 mmHg와 50 mmHg 사이의 감압조건에서 $10^{-4}-10^{-5}$ mole $cm^{-2}sec^{-1}$의 증류속도를 얻을 수 있다. 실험실규모 실험장치에서 50 mmHg의 압력과 1150 K 이상의 온도 조건에서 한 시간 증류로 약 99%의 염이 분리되었다. 희토류 침전물내에 잔류하는 염을 증류에 의해 제거할 때 휘발시간이나, 온도를 증가시키는 것보다 휘발 계면적을 증가시키는 것이 효과가 더 큰 것으로 나타났으며, 휘발면적을 $4.52cm^2$에서 $12.56cm^2$로 증가시켜 한 시간 동안 증류하였을 때 99.95% 이상의 염이 분리되었다.

인산화/증류/고화의 일련공정을 이용한 LiCl-KCl 공융염폐기물 내 희토류 핵종 분리 및 고화 (Separation and Solidification of Rare Earth Nuclides from LiCl-KCl Based Eutectic Waste Salts using a series of Phosphorylation/Distillation/Solidification Processes)

  • 은희철;최정훈;조인학;박환서;박근일
    • 방사성폐기물학회지
    • /
    • 제11권4호
    • /
    • pp.325-332
    • /
    • 2013
  • 사용후핵연료 파이로프로세싱에서 발생하는 LiCl-KCl 공융염폐기물의 부피를 최소화하고 최종적으로 잔류하는 폐기물을 비교적 낮은 온도에서 안정한 형태로 고화하고자 희토류 핵종 염화물을 함유한 LiCl-KCl 공융염을 이용하여 인산화/증류 및 세라믹 고화의 일련공정을 수행하였다. LiCl-KCl 공융염 내 희토류 염화물은 혼합인산화제($Li_3PO_4-K_3PO_4$)를 이용한 인산화 및 공융염 감압증류공정을 통하여 99% 이상을 인산화물 형태로 전환/분리할 수 있었고, 분리한 희토류 인산화물은 고화매질로서 LIP(Lead Iron Phosphate)를 이용하여 $1,050^{\circ}C$에서 균질하고 치밀한 형태의 고화체로 제조할 수 있었으며, 최종적으로 발생하는 방사성 폐기물 부피를 10% 이하로 감용할 수 있음을 확인하였다.

국산 $^{18}F$-FDG Auto Sysnthesizer의 수율 향상과 성능 개선 (Improved Radiochemical Yields, Reliability and Improvement of Domestic $^{18}F$-FDG Auto Synthesizer)

  • 박준형;임기섭;이홍진;정경일;이병철;이인원
    • 핵의학기술
    • /
    • 제13권3호
    • /
    • pp.147-151
    • /
    • 2009
  • Purpose: 2-[$^{18}F$]Fluoro-2-deoxy-D-glucose ([$^{18}F$]FDG) particularly plays as a important role in Positron Emission Tomography (PET) imaging in nuclear medicine. Domestic [$^{18}F$]FDG auto synthesizers are installed in Seoul National University Bundang Hospital (SNUBH) at June 2008, these modules were known that it's synthetic yields were guaranteed in average $45{\pm}5%$ so far. To improve yields and convenience of domestic [$^{18}F$]FDG auto synthesizer, numerous trials in reaction time, base concentration, pressure and temperature were performed to increase [$^{18}F$]FDG yields. Materials and Methods: Several synthetic factors (temperature, time and pressure) and shortcoming were corrected based on many evaporation test. Syringe dispensing of tetra-butylammonium bicarbonate (TBAB) was replaced with micro pipette to prepare tetrabutyl ammonium fluoride salt ([$^{18}F$]TBAF). Troublesome refill of liquid nitrogen every 2 hours which was used to protect vacuum system was changed to charcoal cartridge, base guard filter. To monitor the volume of delivered $[^{18}O]OH_2$ from cyclotron by surveillance camera, we set up the volumetric vial on the cover of the module. In addition to, the recovery vial was added in [$^{18}F$]FDG production system to recover [$^{18}F$]FDG loss due to the leak of valve ($V_{13,14}$) in [$^{18}F$]FDG purification process. Results: When we used micro pipette for adding TBAB ($30\;{\mu}L$ in 12% $H_2O$ in acetonitrile), this quantitative dispensation has enabled to improve $5.5{\pm}1.7%$ residual fluorine-18 activity in fluorine separation cartridge compared to syringe adding. Besides, the synthetic yields of [$^{18}F$]FDG has increased $58{\pm}2.6%$ (n=19), $58{\pm}2.9%$ (n=14), $60%{\pm}2.5%$ (n=17) for 3 months. The life cycle of charcoal cartridge and base vacuum was 3 months prior to filling liquid nitrogen every 2 hours and additional side separator can prevent pump corrosion by organic solvent. After setting of volumetric indicator vial, the operator can easily monitor the total volume of irradiated $[^{18}O]OH_2$ from cyclotron. The recovery vial can be used for the stabilizer when an irregular [$^{18}F$]FDG loss was generated by the leak of valves ($V_{13,14}$). Conclusions: We has optimized appropriate synthetic conditions (temperature, time, pressure) in domestic [$^{18}F$]FDG auto synthesizer. In addition to, the remodeling with several accessories improve yields of domestic [$^{18}F$]FDG auto synthesizer with reliable reproducibility.

  • PDF