• Title/Summary/Keyword: Residual magnetic Field

Search Result 60, Processing Time 0.019 seconds

A study on magnetic layer thickness effects on magnetic properties of CoCrPt/Ti perpendicular media.

  • M. S. Hwang;Lee, T. D.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.369-376
    • /
    • 2000
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt films thickness has been studied. As CoCrPt films thickness increase, the Ms(magnetization saturation) drastically increases at thinner thickness and gradually increases with further increase in thickness from 25nm. This Ms behaviour is associated with primarily the formation of "amorphous-like" reacted layer by intermixing of CoCrPt and Ti at CoCrPt/Ti interface and secondarily change of Cr segregation mode with varying the CoCrPt films thickness. Magnetic domain structure distinctively changes with increasing CoCrPt magnetic layer(ML) thickness. Also the strength of exchange coupling measured from the slope in demagnetizing region in M-H loop changes with ML thickness. Details of the above magnetic properties will be discussed. The expansion of lattice parameters a and c at thinner thickness suggests that Cr segregation mode may be connected with the residual stress of the films. Finally, negative nucleation field(Hn) behaviour with the exchange slope will be reported.

  • PDF

Effects of Magnetic Layer Thickness on Magnetic Properties of CoCrPt/Ti/CoZr Perpendicular Media

  • Hwang, M.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt film thickness has been studied. As the CoCrPt film thickness increases from 25 nm, the Ms (saturation magnetization) increases rapidly at first and then more gradually. This Ms behavior is associated primarily with the formation of an "amorphous-like"reacted layer created by intermixing of CoCrPt and Ti at the CoCrPt/Ti interface and secondarily with a change of the Cr segregation mode with varying CoCrPt film thickness. Magnetic domain structure distinctively changes with increasing CsCrPt magnetic layer (ML) thickness. Also the strength of exchange coupling measured from the slope in the demagnetizing region of the M-H loop changes with ML thickness. The expansion of lattice parameters a and c at smaller film thickness suggests that the Cr segregation mode may be connected with the residual stress of the films. Finally, the negative nucleation field (Hn) shows a unique behavior with the change of strength of the exchange interaction.teraction.

  • PDF

Measurement of AC Hysteresis Loops under Variable Tensile Stress for Amorphous Wire (비정질 세선의 인장응력에 따른 교류자기이력 특성측정)

  • 조희정;양종만;손대락;김구영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.61-64
    • /
    • 1993
  • We have constructed a hysteresis loop tracer in order to measure the magnetic properties of amorphous wires under variable tensile stress. It has a force range of 0 N to 20 N and a magnetizing frequency of 1 kHz to 20 kHz. Using the ac-hysteresis loop tracer, we can measure the magnetic properties(maximum magnetic induction $B_{max}$, residual magnetic induction $B_{r}$, coercive field strength $H_{c}$, etc.) of amorphous wires with precision of 1% under variable tensile stresses.

  • PDF

Magnetic NDE for Sensitization of Inconel 600 Alloy

  • Kikuchi, Hiroaki;Sumimoto, Takaki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.348-351
    • /
    • 2013
  • Inconel 600 alloy, Ni base alloy, is widely used for steam generator tubings where sensitization occurs at grain boundaries and sensitization will induce tubing failures. This alloy has usually paramagnetic property, however, it transforms into ferromagnetic property along grain boundaries when sensitization occurs: this means NDE using magnetism for sensitization is possible. Therefore, in this study, Inconel 600 alloys were heat treated at 873 K from 0 to 400 hours so as to generate sensitization and their magnetic properties were investigated in detail. The saturation and the residual magnetization increase with increasing heat treatment time and take a maximum. On the other hand, the coercive force decreases with the increase in time of heat treatment. We confirmed that characteristics at only grain boundaries change into ferromagnetic phase by a MFM observation. As a trial for industrial application, heat treated Inconel 600 alloy was scanned by a magnetic field sensor, and the variations in magnetization were obtained nondestructively. The results indicate a feasibility of magnetic NDE for sensitization of Inconel 600 alloy.

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.

Microstructure and Magnetic Property of Y-Ba-Cu-O Samples Prepared by Multiseeding

  • Jee, Young A.;Kim, Chan-Joong;Han, Sang-Chul;Kim, Sang-Jun;Hong, Gye-Won
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.363-368
    • /
    • 1999
  • Y-5a-Cu-O superconductors were prepared by TSMG (Top-Seeded Melt Growth) process with multiseeding technique. By using several seeds at the same time, large samples could be fabricated in a short time with simple heat treatment. However, the samples fabricated by normal multiseeding technique show the rapid decrease of trapped magnetic field value across the grain boundaries because of the residual liquid layer. To remove the residual liquid layer, modified multiseeding was newly suggested. The individual grains were combined as single domain, and did not show deterioration of magnetic property at the boundary. The formation mechanism of a well-combined domain by multiseeding technique was discussed.

  • PDF

MHD Turbulence in Expanding and Contracting Media

  • Park, Junseong;Ryu, Dongsu;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2015
  • We investigate the decaying incompressible MHD turbulence by including the effect of the expansion and contraction of background medium. In such an environment, incompressible MHD turbulence has two kinds of time scale. One is the eddy turn-over time (teddy), the other is the expansion/contraction time (texp-cntr). The turbulence is expected to behave differently according to the relationship between the two time scales. For instance, for teddy < texp-cntr, the turbulence would be decay more or less as in a static medium. On the other hand, for teddy > texp-cntr, the effects of expansion and contraction would be dominant. We examine the properties of turbulence in these two regime cases. Based on it, we derive a scaling for the time evolution of flow velocity and magnetic field. (i) In the decay effect dominant case, the velocity and magnetic field scale as $\sqrt{{\rho}v}{\sim}a^{-3}$, $b{\sim}a^{-2.5}$(expanding media) and $\sqrt{{\rho}v}{\sim}a^{-2}$, $b{\sim}a^{-1.5}$(contracting media). The total energy and residual spectra follow the $E^T_k{\sim}k^{-5/3}$, $E^R_k{\sim}k^{-7.3}$ in the inertial range. (ii) In the expanding and contracting dominant case, the velocity and magnetic field scale as $\sqrt{{\rho}v}{\sim}a^{-2.5}$, $b{\sim}a^{-2}$ (expanding/contracting media). The Kinetic and magnetic energy spectra follow the $E^K_k{\sim}a^{-5}$, $E^M_k{\sim}a^{-4}$. We have confirmed that scaling of velocity and magnetic filed is almost the same from the analytic estimates and computational models

  • PDF

Investigating the fatigue failure characteristics of A283 Grade C steel using magnetic flux detection

  • Arifin, A.;Jusoh, W.Z.W.;Abdullah, S.;Jamaluddin, N.;Ariffin, A.K.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.601-614
    • /
    • 2015
  • The Metal Magnetic Memory (MMM) method is a non-destructive testing method based on an analysis of the self-magnetic leakage field distribution on the surface of a component. It is used for determining the stress concentration zones or any irregularities on the surface or inside the components fabricated from ferrous-based materials. Thus, this paper presents the MMM signal behaviour due to the application of fatigue loading. A series of MMM data measurements were performed to obtain the magnetic leakage signal characteristics at the elastic, pre-crack and crack propagation regions that might be caused by residual stresses when cyclic loadings were applied onto the A283 Grade C steel specimens. It was found that the MMM method was able to detect the defects that occurred in the specimens. In addition, a justification of the Self Magnetic Flux Leakage patterns is discussed for demonstrating the effectiveness of this method in assessing the A283 Grade C steel under cyclic loadings.

The study of self excited type brushless charging generator, it has generated region (발전영역을 갖은 자동형 brushless 충전발전기에 관한 연구)

  • Byung In Oh
    • 전기의세계
    • /
    • v.18 no.4
    • /
    • pp.7-15
    • /
    • 1969
  • In this method the condenser excite winding has the phase angle of 90 electrical degree, with the load winding in stator. The condenser excite wing is connected with the condenser while the load winding is with the full rectifer. Direct and quardrature axis components of rotating field winding are composed, of balanced two phase winding, and each one of them is connected with half wave rectifiers. Initically, small amount of lead current can be induced at the condenser excite winding by residual magnetism of rotor. The induced lead current forces the rotating field winding to be excited by synchronous alternating magnetic field. The speed electromotive force, there for, induced in rotating field winding shall electro magnetize the rotating field pole by rotating half wave rectifiers. In the case of the charging generator directly coupled with engines at the operation of wide range speed, the generated region, such as vehicles, aircraft, ships etc, is occured. In conclusion, we can take the advantage of, omitting of voltage regurator and current limiter for charging load and reducing the consumption of fuel using the generated region which can be devided in to Impossible generated region, Generated region, and suspension generated region.

  • PDF

Temperature Dependence of Magnetic Properties of YIG films Grown by Solid Phase Epitaxy (고상에피택시 YIG 박막의 온도에 따른 자기특성)

  • Jang, Pyug-Woo;Kim, Jong-Ryul
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.25-29
    • /
    • 2005
  • Magnetic properties of YIG films grown by solid phase epitaxy (SPE) was measured as a function of temperature with focus on magneto-crystalline and perpendicular magnetic anisotropy. Perpendicular magnetic anisotropy was not induced in the SPE YIG films annealed at low temperature by relaxing residual stress through formation of dislocation. On the contrary the films annealed at high temperature showed perpendicular magnetic anisotropy which shows very low density of dislocation. Perpendicular magnetic anisotropy field decreased linearly up to a high temperature of $230^{\circ}C$ above which magneto-crystalline anisotropy disappeared. Coercivity also decreased linearly with temperature up 세 $230^{\circ}C$. Magneto-crystalline anisotropy of perpendicular anisotropy induced epitaxial (111) YIG films can be measured using $H_k=4K_1/3M_s$. Temperature behavior of initial susceptibility can be successfully explained by Hopkinson effects. Curie temperature of YIG films grown on GGG substrate with high paramagnetic susceptibility can be easily measured using the results.