• Title/Summary/Keyword: Residual load

Search Result 684, Processing Time 0.026 seconds

Characteristics of Surface Roughness in the Wire-Cut Electric Discharge Cutting Conditions of Aluminium Alloy 2024 (알루미늄 합금 2024에서 와이어 컷 방전가공조건에 따른 표면 거칠기 특성)

  • Lee, Soon-Kwan;Ryu, Cheong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Currently, the aircraft industry, aircraft parts as well as airframe have been developed in producing, the aircraft parts and fuselages have been produced the product by cutting rather than forging and casting because of the residual stress and stress concentration. In this study, the aircraft is being used in many parts of aluminium alloy 2024 in wire-cut E.D.M. The selected experimental parameters are peak current, no-load voltage, off time and feed rate. It is found that cutting mountain part on surface roughness of the curve 0.3mm than 0.25mm diameter wire electrode is stable in many uniform distribution.

A Study for Quality Stabilization of Ball-Seat - II (볼 시트 품질안정화에 관한 연구 - II)

  • 강태호;김영수;정영득;김인관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.346-349
    • /
    • 2001
  • Nowadays the amount of plastic products is increasing in modern industry. Plastic materials are continuously developed to satisfy the mechanical, physical, and chemical properties. The increasing application of plastic parts in automobile and aerospace industries is due to the fact that it can reduce the structural weight and can lessen the environmental contamination. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low cost and short production time. Through various analyses of resin flow and molding process for the conventional gate and cooling mechanism, a new type of mold was designed which had different gate location and cooling systems. Newly designed ball seat has an excellent performances, i.e. diminished weld-line, residual stress density, higher magnitude less crack propagation and smaller dimensional contractions effect.

  • PDF

Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints (동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계)

  • Jo, Deok-Hyeon;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.

Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity (소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석)

  • 한재영;김성보
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

Network Selection Algorithm Based on Spectral Bandwidth Mapping and an Economic Model in WLAN

  • Pan, Su;Zhou, Weiwei;Gu, Qingqing;Ye, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.68-86
    • /
    • 2015
  • Future wireless network aims to integrate different radio access networks (RANs) to provide a seamless access and service continuity. In this paper, a new resource denotation method is proposed in the WLAN and LTE heterogeneous networks based on a concept of spectral bandwidth mapping. This method simplifies the denotation of system resources and makes it possible to calculate system residual capacity, upon which an economic model-based network selection algorithm is designed in both under-loaded and over-loaded scenarios in the heterogeneous networks. The simulation results show that this algorithm achieves better performance than the utility function-based access selection (UFAS) method proposed in [12] in increasing system capacity and system revenue, achieving load balancing and reducing the new call blocking probability in the heterogeneous networks.

A Study on the Tube/tubesheet Interface in the Heat Exchangers Jointed by Explosive Bonding (폭발접합된 열교환기류 튜브와 튜브시트의 계면 특성에 관한 고찰)

  • 이병일;공창식;이상철
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.38-47
    • /
    • 2000
  • Characteristics of the interface between tube and tube sheet which were formed by explosive expansion and roll expansion, have been studied in the research. The results are as follows: Optimum amounts of explosives for the expansion of Alloy 600 (19.05mm and 15.88mm) were found to be RDX 3.5-8.5g/m. Because explosive expansion caused les strain hardening and increased bounding strength, characteristics of the explosively expanded were better than those of mechanically expanded. As the transition region of the explosive expansion is inactive, the resistance to the stress corrosion cracking increases by 30∼40% compared to the roll and hydraulic expansion.

  • PDF

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

Study on the Mechanical Behavior of Fiber Metal Laminates Using Classical Lamination Theory (고전 적층이론에 의한 섬유금속적층판의 기계적 거동 연구)

  • 노희석;최흥섭;강길호;하민수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.37-41
    • /
    • 2003
  • In this study the mechanical behaviors of fiber metal laminates (FML) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also load carrying mechanism between metal sheets and composite layers in the FML are considered.

  • PDF

A Case Study of Remaining Life Assessment for Boiler Header (고온 보일러 헤더의 잔여수명평가 사례 연구)

  • Baek, U.B.;Lee, H.M.;Park, J.S.;Kim, D.J.;Yoon, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.274-279
    • /
    • 2001
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of 1Cr-0.5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_t$-parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of $(da/dt)_{avg}$ vs. $(C_t)_{avg}$ for residual life assessment.

  • PDF

Prediction of Fatigue Life for Composite Rotor Blade of Multipurpose Helicopter Using Strength Degradation Model (강도저하모델을 이용한 다목적헬리콥터용 복합재로터깃 피로수명예측)

  • 권정호;서창원
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.50-59
    • /
    • 2001
  • The predictions of residual strength evolution and fatigue life of full scale composite rotor blade for multipurpose helicopter were studied using a strength degradation model. Flight-by-flight load spectrum was developed on the basis of FELIX standard spectrum data. The laminated structural analysis was also performed to obtain corresponding local stress and/or strain spectra for each ply of laminate skin and glass roving spar structures around the blade root where fatigue damage was severely anticipated.

  • PDF