• Title/Summary/Keyword: Residual ionospheric error

Search Result 3, Processing Time 0.014 seconds

A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region (한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발)

  • Yoon, Moonseok;Ahn, Jongsun;Joo, Jung -Min
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • Ionosphere, one of the largest error sources, can pose potentially harmful threat to single-frequency GNSS (global navigation satellite system) user even after applying ionospheric corrections to their GNSS measurements. To quantitatively assess ionospheric impacts on the satellite navigation-based applications using simulation, the standard deviation of residual ionospheric errors is needed. Thus, in this paper, we determine conservative statistical quantity that covers typical residual ionospheric errors for nominal days. Extensive data-processing computes TEC (total electron content) estimates from GNSS measurements collected from the Korean reference station networks. We use Klobuchar model as a correction to calculate residual ionospheric errors from TEC (total electron content) estimate. Finally, an exponential delay model for residual ionospheric errors is presented as a function of local time and satellite elevation angle.

Integrity Monitoring for Drone Landing in Urban Area using Single Frequency Based RRAIM

  • Jeong, Hojoon;Kim, Bu-Gyeom;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.317-325
    • /
    • 2022
  • In this paper, we developed a single frequency-based RRAIM to monitor integrity of the UAM landing vertically in urban area with only low-cost single-frequency GPS receiver. Conventional dual-frequency RRAIM eliminates ionospheric delay through a combination of frequencies. In this study, ionospheric delay was directly modeled. Drift error of residual ionospheric delay is modeled using the previously studied result on ionospheric rates of change. To verify the performance of the proposed RRAIM algorithm, a simulation of vertical landing UAM in urban area was conducted. It was assumed that the protection level at the initial position was calculated through SBAS correction data. During vertical landing, integrity monitored by receiver alone without external correction data. In the 60 sec simulation, the protection level of the proposed RRAIM compared to the conventional RRAIM was calculated to be 140% due to the accumulated ionospheric delay error. Nevertheless, it was confirmed that the final vertical protection level meeting the requirements of LPV-200, which cannot be achieved with single frequency GPS receiver alone.

Performance Evaluation of Ionosphere Modeling Using Spherical Harmonics in the Korean Peninsula

  • Han, Deokhwa;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The signal broadcast from a GPS satellite experiences code delay and carrier phase advance while passing through the ionosphere, which causes a signal error. Many ionosphere models have been studied to correct this ionospheric delay error. In this paper, the ionosphere modeling for the Korean Peninsula was carried out using a spherical harmonics based model. In contrast to the previous studies, we considered a real-time ionospheric delay correction model using fewer number of basis functions. The modeling performance was evaluated by comparing with a grid model. Total number of basis functions was set to be identical to the number of grid points in the grid model. The performance test was conducted using the GPS measurements collected from 5 reference stations during 24 hours. In the test result, the modeling residual error was smaller than that of the existing grid model. However, when the number of measurements was small and the measurements were not evenly distributed, the overall trend was found to be problematic. For improving this problem, we implemented the modeling with additional virtual measurements.