• 제목/요약/키워드: Residual ionospheric error

검색결과 3건 처리시간 0.015초

한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발 (A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region)

  • 윤문석;안종선;주정민
    • 한국항행학회논문지
    • /
    • 제25권3호
    • /
    • pp.194-202
    • /
    • 2021
  • GNSS (global navigation satellite system)측정치 보정 후에 남아 있는 전리층 잔류 오차에 대해 시뮬레이션 기반의 영향분석(오차 및 서비스 영역 분석 등)을 수행하기 위해서는 위해서는 전리층 잔류 오차에 대한 통계적 모델링이 필수적으로 선행되어야 한다. 본 논문에서는 국내 GNSS 측정치 및 Klobuchar 모델을 활용하여 국내 정상상태 전리층 환경에서의 전리층 잔류 오차에 대한 보수적인 표준편차의 해석적 모델을 도출하였다. 다양한 전리층 활동 상태를 포함하기 위해 미(美) CAT I (category I) LAAS (local-area augmentation system) 전리층 통계치 산출일 중 ROTI (rate-of-tec index) 지수를 활용하여 전리층 활동이 비정상적인 날짜는 제외하고 GNSS 분석 데이터를 구성하였다. GNSS 데이터 처리를 통해 전리층 잔류 오차를 계산하고, 잔류 오차 거동의 특성을 근거하여 지역 시 및 위성 앙각에 따라 통계치를 산출하였다. 마지막으로 전리층 잔류 오차의 확률적 거동을 보수적으로 포함할 수 있는 표준편차값에 대한 해석적 모델을 감쇠 지수 접합을 통해 도출하였다.

Integrity Monitoring for Drone Landing in Urban Area using Single Frequency Based RRAIM

  • Jeong, Hojoon;Kim, Bu-Gyeom;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.317-325
    • /
    • 2022
  • In this paper, we developed a single frequency-based RRAIM to monitor integrity of the UAM landing vertically in urban area with only low-cost single-frequency GPS receiver. Conventional dual-frequency RRAIM eliminates ionospheric delay through a combination of frequencies. In this study, ionospheric delay was directly modeled. Drift error of residual ionospheric delay is modeled using the previously studied result on ionospheric rates of change. To verify the performance of the proposed RRAIM algorithm, a simulation of vertical landing UAM in urban area was conducted. It was assumed that the protection level at the initial position was calculated through SBAS correction data. During vertical landing, integrity monitored by receiver alone without external correction data. In the 60 sec simulation, the protection level of the proposed RRAIM compared to the conventional RRAIM was calculated to be 140% due to the accumulated ionospheric delay error. Nevertheless, it was confirmed that the final vertical protection level meeting the requirements of LPV-200, which cannot be achieved with single frequency GPS receiver alone.

Performance Evaluation of Ionosphere Modeling Using Spherical Harmonics in the Korean Peninsula

  • Han, Deokhwa;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 2013
  • The signal broadcast from a GPS satellite experiences code delay and carrier phase advance while passing through the ionosphere, which causes a signal error. Many ionosphere models have been studied to correct this ionospheric delay error. In this paper, the ionosphere modeling for the Korean Peninsula was carried out using a spherical harmonics based model. In contrast to the previous studies, we considered a real-time ionospheric delay correction model using fewer number of basis functions. The modeling performance was evaluated by comparing with a grid model. Total number of basis functions was set to be identical to the number of grid points in the grid model. The performance test was conducted using the GPS measurements collected from 5 reference stations during 24 hours. In the test result, the modeling residual error was smaller than that of the existing grid model. However, when the number of measurements was small and the measurements were not evenly distributed, the overall trend was found to be problematic. For improving this problem, we implemented the modeling with additional virtual measurements.