• 제목/요약/키워드: Residual energy

검색결과 1,098건 처리시간 0.023초

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

LPC 잔여신호의 에너지를 이용한 회전기기의 고장진단 시스템 (Fault Diagnosis System of Rotating Machines Using LPC Residual Signal Energy)

  • 이성상;조상진;정의필
    • 융합신호처리학회논문지
    • /
    • 제6권3호
    • /
    • pp.143-147
    • /
    • 2005
  • 운전 중인 기계들의 안전 운전과 예지 보전을 위한 설비의 고장 감지 및 진단과 상태감시는 산업 현장에서 중요한 역할을 담당하고 있다. 이러한 설비의 많은 기기들은 회전기기로 이루어져 있으며 회전기기의 고장진단은 오랜 기간 많은 분야에서 연구되고 있다. 본 연구에서는 회전기기의 고장신호는 주파수 영역의 신호의 변화로 나타난다는 특징을 이용하여 보다 효율적인 주파수 영역에서의 신호 해석을 위하여 Linear Predictive Coding(LPC) 계수를 이용하였다. 사용된 데이터는 회전기기의 고장 신호의 습득을 용이하게 하기 위하여 유도전동기에 인위적인 고장재현을 통하여 습득된 진동 신호를 사용하였다. 제안된 시스템은 LPC 분석을 사용하여 일반적으로 사용되는 주파수 영역 상에서의 다른 해석 방법들보다 빠른 시간에 연산 결과를 도출할 수 있는 장점을 가질 수 있었으며, 성공적인 실험 결과를 얻을 수 있었다.

  • PDF

Caramel형 갈색화 반응속도에 관한 연구 (A study on the reaction rate of caramel type browning reaction)

  • 신민자;안명수
    • 한국식품조리과학회지
    • /
    • 제15권4호
    • /
    • pp.363-369
    • /
    • 1999
  • The study was carried out to compare the reaction rate of caramel type browning reaction of xylose(XY), glocose(GL), sucrose(SU), glucose+citric acid(GLCA), glucose+sodiumcitrats(GLSC), glucose+glycine(GLGC) heated at 60, 80, 100, 120 and 140$^{\circ}C$ for 24 hours, respectively. 1. The color intensity (absorbance at 490 nm) of the browning reaction mixtures tends to increase as the browning reaction time gets longer and the browning of reaction temperature gets higher. But the degree of the intensity of SU and GLCA changes very little. 2. The reaction rate constant (K) was increased rapidly above 120$^{\circ}C$ and appeared maximum at 140$^{\circ}C$, especially GLGC (140.25) was the highest. The activation energy (Ea) of sugars. XY had the highest value (124.36 J/mol), while SU the lowest(104.68 J/mol). Mixtures of GLGC was shown to have higher activation energy (144.94 J/mol) than the sugar alone and Q$\_$10/ values of GLGC were 1.68-2.85. 3. The residual amount of reactants such as xylose, glucose, sucrose, citric acid, sodium citrate and glycine in each browning mixture were decreased upon the browning reaction temperature increasing. In the GLCA, GLSC and GLGC browning mixtures, respectively, the residual amounts of glucose were less than those with amino acid, organic acid and their salt.

  • PDF

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

감마선과 UV 조사에 의한 항생제 분해 (Assays of Residual Antibiotics after Treatment of γ-ray and UV Irradiation)

  • 신지혜;남지현;유승호;이면주;이동훈
    • 방사선산업학회지
    • /
    • 제4권1호
    • /
    • pp.39-45
    • /
    • 2010
  • The pollution of antibiotics is a major cause of spreading antibiotics resistant bacteria in the environment. Applications of ozonation, UV, and ${\gamma}-ray$ irradiations have been introduced to remove antibiotics in the effluents from wastewater treatment system. In this study, we compared the chemical (HPLC) and biological (antimicrobial susceptibility test, AMS) assays in measuring of the concentrations of residual antibiotics after ${\gamma}-ray$ and UV irradiation. Most samples were degraded by ${\gamma}-ray$ irradiation (1~2 kGy). However, lincomycin and tetracycline were not degraded by UV irradiation. The concentration of residual antibiotics, that was treated with ${\gamma}-ray$ and UV irradiation, measuring by bioassay was similar to HPLC. The concentrations of ${\gamma}-ray$ irradiated cephradine measured by AMS test were 2 times higher than that of HPLC assay, indicating AMS test is more sensitive than HPLC assay. These results indicate that ${\gamma}-ray$ irradiation technique is more useful than UV irradiation, and biological assay is more useful to detect the antibiotics and toxic intermediates in antibiotics degradation.

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

Stagewise Weak Orthogonal Matching Pursuit Algorithm Based on Adaptive Weak Threshold and Arithmetic Mean

  • Zhao, Liquan;Ma, Ke
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1343-1358
    • /
    • 2020
  • In the stagewise arithmetic orthogonal matching pursuit algorithm, the weak threshold used in sparsity estimation is determined via maximum iterations. Different maximum iterations correspond to different thresholds and affect the performance of the algorithm. To solve this problem, we propose an improved variable weak threshold based on the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the residual error value to control the weak threshold. When the residual value decreases, the threshold value continuously increases, so that the atoms contained in the atomic set are closer to the real sparsity value, making it possible to improve the reconstruction accuracy. In addition, we improved the generalized Jaccard coefficient in order to replace the inner product method that is used in the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the covariance to replace the joint expectation for two variables based on the generalized Jaccard coefficient. The improved generalized Jaccard coefficient can be used to generate a more accurate calculation of the correlation between the measurement matrixes. In addition, the residual is more accurate, which can reduce the possibility of selecting the wrong atoms. We demonstrate using simulations that the proposed algorithm produces a better reconstruction result in the reconstruction of a one-dimensional signal and two-dimensional image signal.

잔류가스 분석기(RGA)와 인공지능 모델링을 이용한 모니터링 시스템 개발 (Development of Monitoring System Using Residual Gas Analyzer (RGA) and Artificial Intelligence Modeling)

  • 이지수;김송훈;김경수;송효종;박상훈;고득훈;이봉재
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.129-134
    • /
    • 2024
  • This study aims to talk about the necessity of solving the PFC gas emission problem raised by the recent development of the semiconductor industry and the remote plasma source method monitoring system used in the semiconductor industry. The 'monitoring system' means that the researchers applied machine learning to the existing monitoring technology and modeled it. In the process of this study, Residual Gas Analyzer monitoring technology and linear regression model were used. Through this model, the researchers identified emissions of at least 12700mg CO2 to 75800mg CO2 with values ranging from ion current 0.6A to 1.7A, and expect that the 'monitoring system' will contribute to the effective calculation of greenhouse gas emissions in the semiconductor industry in the future.

  • PDF

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

ZnO 나노파우더로 제작한 Bi계 바리스터의 에너지내량 특성 (The Characteristic on Energy Capability of Varistor fabricated with ZnO Nano-powder)

  • 왕민성;정종엽;송민종;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.294-295
    • /
    • 2006
  • Varistor fabricated with ZnO nano-powder was studied about the characteristic of energy capability in this paper. ZnO nano-powder varistor were sintered in air at $1050\;^{\circ}C$. The electrical properties and residual voltage of ZnO nano-powder varistor were obtained. Our ZnO nano-powder varistor has about 3 times of electric field at varistor voltage as compared with commercial ZnO varistor fabricated with micro-powder. In the current impulse withstand test, our nano varistor has had better performance than micro varistor. To analysis energy capability take infrared images for pyrexia distribution of each varistor. ZnO Nano-powder varistor has shown much quick response property because of increasing effective cross-section.

  • PDF