• 제목/요약/키워드: Residual energy

검색결과 1,091건 처리시간 0.029초

SM45C재의 UNSM 처리에 의한 트라이볼러지 특성 변화 (Variations in Tribology Factors of SM45C by UNSM Modification)

  • 심현보;서창민;서민수;아마노브;편영식
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.492-501
    • /
    • 2018
  • The following results were obtained from a series of studies to accumulate data to reduce the coefficient of friction for press dies by performing tribological tests before and after the UNSM treatment of SM45C. The UNSM-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those for untreated materials. When loads of 5 N, 7.5 N, and 10 N were applied to the untreated material of SM45C, the coefficient of friction was approximately 0.76-0.78. With the large specimen, a value of 0.72-0.78 was maintained at a load of 50 N despite the differences in the size of the wear specimen and working load. Tribological tests of large specimens of SM45C treated with UNSM under tribological conditions of 100 N and 50 N showed that the frictional coefficient and time constant stably converged between 0.7 and 0.8. The friction coefficients of the small specimens treated with UNSM showed values between 0.78 and 0.75 under 5 N, 7.5 N, and 10 N. The friction coefficients of the SM45C treated with UNSM were comparable to each other.

SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성 (Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films)

  • 심현보;서창민;김종형;서민수
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

Outcome of 980 nm diode laser vaporization for benign prostatic hyperplasia: A prospective study

  • Mithani, M. Hammad;El Khalid, Salman;Khan, Shariq Anis;Sharif, Imran;Awan, Adnan Siddiq;Mithani, Shoaib;Majeed, Irfan
    • Investigative and Clinical Urology
    • /
    • 제59권6호
    • /
    • pp.392-398
    • /
    • 2018
  • Purpose: To evaluate the initial experience and outcome of photo-selective vaporization of the prostate (PVP) for benign prostatic hyperplasia (BPH) in Pakistan with the use of a 980 nm diode laser. Materials and Methods: A prospective study was performed from November 2016 to December 2017. A total of 100 patients diagnosed with bladder outlet obstruction secondary to BPH who planned for PVP were enrolled in the study. PVP was carried out with a diode laser at 980 nm (Biolitec Diode 180W laser) in a continuous wave with a 600 nm (twister) fiber. Baseline characteristics and perioperative data were compared. Postoperative outcomes were evaluated by International Prostate Symptom Score (IPSS), post void residual (PVR) and maximum urinary flow rate (Qmax) at 3 and 6 months after surgery. Results: The mean age was $65.82{\pm}10.42$, mean prostate size was $67.35{\pm}16.42$, operative time was $55.85{\pm}18.01$ and total energy was $198.68{\pm}49.12kJ$. At 3 months and 6 months, significant improvements were noted (p<0.001) in IPSS $7.04{\pm}1.69$ (-18.92), Qmax $19.22{\pm}4.75mL/s$ (+13.09) and and PVR $18.89{\pm}5.39mL$ (-112.80). Most frequent problems were burning micturition (35%) and terminal dysuria (29%). No significant difference in postoperative hemoglobin was seen in patients who were on anti-platelet drugs. Conclusions: PVP with a diode laser is a safe and effective procedure for the treatment of BPH and is also safe in patients who are on anti-platelet agents.

커널회귀 모델기반 가스터빈 축진동 신호이상 분석 (Kernel Regression Model based Gas Turbine Rotor Vibration Signal Abnormal State Analysis)

  • 김연환;김동환;박선휘
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.101-105
    • /
    • 2018
  • 본 논문에서는 가스 터빈 축 진동 신호 비정상 상태 분석의 사례 연구를 위해 커널 회귀 모델을 적용한다. 원격으로 전송되는 발전소 가스터빈의 진동데이터에 커널 회귀 모델을 적용하여 설비를 실시간으로 감시 및 분석 외에도, 축진동 신호의 비정상 상태를 분석하기 위하여 활용될 수 있다. 정상운전 중에 측정한 가스터빈의 정상적인 축진동 데이터 기반의 훈련데이터를 사용하여 생성한 자동연관커널회귀의 경험적 모델을 생성하고 적용할 수 있다. 이 데이터 기반 모델의 예측치를 실시간 데이터와 비교하여 신호의 상태를 분석하고 잔차를 감시하여 이상상태에 대한 분석 정보를 제공할 수 있다. 이상상태에서 발생하는 잔차는 비정상적으로 변화됨으로서 비정상 상태를 분석 할 수 있다. 본 논문에서 커널회귀모델은 축진동 센서의 신호 이상의 원인 분석 사례에서 고장을 구분할 수 있는 정보를 제공한다.

Development of Simplified DNBR Calculation Algorithm using Model-Based Systems Engineering Methodology

  • Awad, Ibrahim Fathy;Jung, Jae Cheon
    • 시스템엔지니어링학술지
    • /
    • 제14권2호
    • /
    • pp.24-32
    • /
    • 2018
  • System Complexity one of the most common cause failure of the projects, it leads to a lack of understanding about the functions of the system. Hence, the model is developed for communication and furthermore modeling help analysis, design, and understanding of the system. On the other hand, the text-based specification is useful and easy to develop but is difficult to visualize the physical composition, structure, and behaviour or data exchange of the system. Therefore, it is necessary to transform system description into a diagram which clearly depicts the behaviour of the system as well as the interaction between components. According to the International Atomic Energy Agency (IAEA) Safety Glossary, The safety system is a system important to safety, provided to ensure the safe shutdown of the reactor or the residual heat removal from the reactor core, or to limit the consequences of anticipated operational occurrences and design basis accidents. Core Protection Calculator System (CPCS) in Advanced Power Reactor 1400 (APR 1400) Nuclear Power Plant is a safety critical system. CPCS was developed using systems engineering method focusing on Departure from Nuclear Boiling Ratio (DNBR) calculation. Due to the complexity of the system, many diagrams are needed to minimize the risk of ambiguities and lack of understanding. Using Model-Based Systems Engineering (MBSE) software for modeling the DNBR algorithm were used. These diagrams then serve as the baseline of the reverse engineering process and speeding up the development process. In addition, the use of MBSE ensures that any additional information obtained from auxiliary sources can then be input into the system model, ensuring data consistency.

소형 표류부이를 이용한 안목해안 표층 연안류 관측 (Surface current measurements using lagrangian Drifters in Anmok)

  • 임학수;김무종;심재설
    • 한국연안방재학회지
    • /
    • 제4권spc호
    • /
    • pp.245-253
    • /
    • 2017
  • In this study, surface currents measured by small lagrangian GPS drifters (Aquadrifter) in Anmok coastal waters were analysed to account for the variability of nearshore surface current and wave-induced current to understand sediment transport mechanism near the crescentic bars in the surf-zone and near Kangneung breakwater and submerged breakwater in Anmok. The 8 times lagrangian drifter experiments were conducted mostly during in 2nd, 3rd, 4th intensive measurements in winter, summer, and spring seasons with long-term wave observation at the station W1. The analysed surface currents near the breakwaters in Anmok show that wave-induced currents at the middle of the submerged breakwater were separated and flowed toward the shoreline but offshore currents were dominant through the channels between the breakwaters. The longshore currents near the shoreline were flowed to the northwest (southeast) depending on the incoming waves from ENE (NNE). The surface nearshore offshore currents were generated mostly by waves and winds in case of high and low wave energy environments. Using the small-size lagrangian surface drifter experiments, we successfully measured longshore and offshore wave-induced currents in the surf-zone and near submerged breakwater close to Kangneung breakwater. The drifter experiment results show the availability of direct observation of nearshore surface currents to understand the mechanism of sediment transport analysing observed wave-induced current and ebb-current in the surf-zone generated by incoming waves and local winds.

파일럿 규모 2단 가스화 시스템 공정을 이용한 RDF 가스화 (RDF Gasification Using a Pilot-Scale Two-Stage Gasification System)

  • 박인희;박영권;이영만;배우근;곽연호;천경호;박성훈
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.286-290
    • /
    • 2011
  • 본 연구에서는 W시에서 운영하는 RDF 생산시설의 펠렛 RDF를 이용하여 RDF의 가스화 반응으로 합성가스를 생산하였다. 생산된 RDF 촤를 소각로에 투입하여 연소과정에서 발생되는 열을 가스화로의 간접열원으로 이용하는 2단 가스화시스템 공정을 개발하였다. RDF의 가스화 반응 시간에 따른 합성가스 발생 비율과 잔재물(촤)의 발열량 분석 등을 통하여 2단 가스화시스템 공정에서의 합성가스 생산 최적 운전조건을 연구하였다. 가스화로의 외부 열원 공급에 필요한 에너지 비용 저감을 위해 최적의 촤 체류시간을 도출하였다.

수압파쇄를 이용한 초기응력 측정 결과의 신뢰도 제고 방안 - 일본 지반공학회 표준시험법 개정안을 중심으로 (Improvement of In-Situ Stress Measurements by Hydraulic Fracturing - Focusing on the New Standard by Japanese Geotechnical Society)

  • 김형목;이항복;박찬;박의섭
    • 터널과지하공간
    • /
    • 제32권1호
    • /
    • pp.1-19
    • /
    • 2022
  • 본고에서는 수압파쇄를 이용한 초기응력 측정결과의 정밀도 제고 방안으로 최근 제안된 일본 지반공학회 표준시험법 개정안의 검토 결과를 수록하였다. 개정안에서는 수압파쇄에 의해 형성된 암석 균열 표면의 거칠기와 잔류 간극을 고려한 균열재개압력의 수정식을 제안하였다. 또한, 수압파쇄시스템 컴플라이언스가 초기응력 추정 결과에 미치는 영향을 파악하고 주변 암반의 탄성계수가 클수록 수압파쇄시스템 컴플라이언스가 충분히 낮아야함을 보였다.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.