• Title/Summary/Keyword: Residual carbon

Search Result 517, Processing Time 0.022 seconds

The Effects of Additives and Residual Stresses on the Electroless Nickel Plating on Carbon Substrate (첨가제와 잔류응력이 탄소 기지상 무전해 니켈도금에 미치는 영향)

  • Cheon, So-Young;Rhym, Young-Mok;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2011
  • Electroless nickel platings on carbon substrate were investigated for porous MCFC electrode applications. Acidic bath and alkaline bath were used in electroless nickel plating on carbon substrates. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As pH was increased, the deposition rate was increased in both baths and the content of phosphorus in nickel deposit was decreased. The residual stresses of nickel deposit from acidic bath showed the compressive stress and on the other hand those from alkaline bath showed the high tensile stress. High tensile internal stress in nickel deposit caused the cracks over pH 11. Thiourea was added to both acidic and alkaline bath. The deposition rate of nickel was increased upto 0.5 ppm of thiourea and decreased. The maximum concentration of thiourea for the electroless nickel plating on carbon substrate was 1.5 ppm in both acidic and alkaline bath. Succinic acid was added to acidic bath. Addition of succinic acid up to 5 g/L increased the deposition rate of nickel and beyond which the deposition rate was decreased and maintained.

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

오스테나이트계 스테인레스강의 육성 용접부에서 고온균열 감수성에 미치는 용접입열의 영향

  • 김대영;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.40-46
    • /
    • 1988
  • The effect of heat input on the content of residual .delta.-ferrite and the hot cracking susceptibility in the austenitic stainless steel overlaid on the carbon steel was studied in the range of heat input from 7.5 to 15.1 KJ/cm. Present study shows that residual .delta.-ferrite content in the overlay is mainly determined by the dilution of the base metal (carbon steel) which is in turn affected by heat input, i.e. the amount of dilution decreases as heat input increase. Accordingly, higher heat input results in a substantial increase in Cr equivalent but a little increase in Ni equivalent due to the less dilution of carbon from base metal. This fact can explain the result obtained in this study, i, e, the higher content of .delta.-ferrite in the weld deposit made with higher heat input. This in turn causes more resistant overlaying weld metal to hot cracking.

  • PDF

Fabrication of in-situ Formed Namo-Composite Using Polymer Precursor : I. Adsorption Behavior of Polymer Followed $SiO_2$ Surface formation onto Silicon Nitride Surface (폴리머 Precursor를 이용한 in-situ 나노 복합체의 제조 : I. 질화규소 표면에서의 $SiO_2$ 피막형성에 따른 폴리머의 흡착거동)

  • 정연길;백운규
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.280-287
    • /
    • 2000
  • Adsorption behavior and amount of phenolic resin followed silica (SiO2) formation onto silicon nitride(Si3N4) surface were investigated using electrokinetic sonic amplitude (ESA) technique and with UV spectrometer, to fabricate Si3N4/SiC nano-composite based on reaction between SiO2 formed and phenolic resin absorbed onto Si3N4 particle. The amount of SiO2 formed and carbon from phenolic resin absorbed onto Si3N4 surface were calculated quantitatively to adjust the reaction between SiO2 and phenolic resin, resulting in no residual SiO2 and carbon. As a result, pre-heated tempeature for optimized reaction was below 25$0^{\circ}C$, in which there was no residual SiO2 and carbon.

  • PDF

Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process

  • Herranz, G.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.225-226
    • /
    • 2006
  • In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and $600^{\circ}C$. The specimens were sintered at temperatures between 1210 and $1280^{\circ}C$ in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.

  • PDF

Electro-optic Characteristic of Twisted Nematic Mode using a Liquid Crystal Dispersed Carbon Nanotubes (탄소 나노 튜브가 분산된 액정을 이용한 TN 모드의 전기 광학 특성 연구)

  • Baik, In-Su;Jeon, Sang-Youn;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.114-117
    • /
    • 2005
  • We have fabricated twisted nematic (TN) cell doped by carbon nanotubes (CNTs). The CNTs with a minute amount of doping do not perturb the liquid crystal orientation in the off- and on-state. The hysteresis studies of voltage-dependent transmittance and capacitance under ac and dc electric field show that the amount of residual dc, which is related to image sticking problem in liquid crystal displays, is greatly reduced due to ion trapping by CNTs.

  • PDF

Study of Residual Stress Control for Thickening to Hydrogen Free-DLC Films (무수소 DLC막의 후막화를 위한 잔류응력 제어 연구)

  • Kim, Jong-Guk;Gang, Yong-Jin;Kim, Gi-Taek;Kim, Dong-Sik;Ryu, Ho-Jun;Jang, Yeong-Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.101-101
    • /
    • 2016
  • DLC(Diamond Like Carbon)막은 그 물성의 다양함으로 인하여 산업기계, 금형, 공구, 광학 및 수송기기의 파워셀 부품등 많은 산업분야에 활용되고 있다. 일반적으로 DLC막은 증착에 사용되는 카본의 원료에 따라 크게 두 가지로 나눌 수 있는데, 이는 탄화 수소계 가스(CxHy)를 사용하여 증착된 a-C:H(amorphous Hydro-Carbon)과 고체 카본을 사용하는 a-C(amorphous Carbon)이다. 또한 a-C 중 진공 아크 공법으로 제작된 막(ta-C : tetrahedral amorphous-Carbon)은 다이아몬드 성분인 sp3의 분률이 높아, 그 경도는 40 - 85 GPa 이상이며, 무수소화로 500도 이상의 고온에서도 그 물성의 변화가 적어 그 활용도가 높아지고 있다. 하지만 높은 경도와 더불어 막의 잔류응력이 높아 3 um 이상 후막화하는 것은 어렵다. 이는 높은 잔류응력으로 인한 막의 증착시, 막 자체가 파손되거나, 기판과 막사이의 계면 밀착력이 약하여 박리되거나, 또는 높은 밀착력으로 인하여 모재가 파손되는 등 다양한 문제를 발생한다. 본 연구에서는 이 고경도 무수소 DLC막(ta-C)의 후막화하는 방안으로 주요 코팅 변수와 잔류응력과의 관계를 에너지 관점에서 파악하고 이를 활용 잔류응력을 제어하여 할 수 있는 방법을 제시하고자 한다.

  • PDF

Residual Stress Comparison of Type III Hydrogen Tank by Curing Conditions (Type III 수소탱크 경화조건에 따른 잔류응력 비교)

  • Yong-Chul Shin
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • Since the residual stress of hydrogen tank is directly related to durability, it is very important to reduce it for safety. Type II~IV hydrogen tank are manufactured by the filament winding method, in which the fiber is impregnated with resin and wound around the liner. Residual stress in composite is affected by curing conditions and fiber tension etc. In this study, the effect of curing conditions on residual stress was analyzed when manufacturing a Type III hydrogen tank using carbon fiber filament winding process. First, the curing behavior of the epoxy resin was analyzed using a differential scanning calorimetry. Through this, the curing temperature was set to 140℃. During the same curing time, the specimens were cured under 2-stage curing condition that reached 140℃ earlier and a 4-stage curing condition that reached 140℃ later, respectively. After curing, the residual stress of the composite material was measured by the ring slitting method, and the experimental values were compared with numerical values. It was confirmed that there was a significant difference in residual stress according to the optimization of curing conditions.

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF