• 제목/요약/키워드: Residual Sway

검색결과 22건 처리시간 0.017초

동시최적화 설계기법을 이용한 항만용 크레인의 흔들림 제어계 설계 (An Anti-Sway Control System Design Based on Simultaneous Optimization Design Approach)

  • 김영복;문덕홍;양주호;채규훈
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.66-73
    • /
    • 2005
  • The sway motion control problem of a container hanging on the trolley is considered in this paper. In the container crane control problem, the main issue involves suppressing the residual swing motion of the container at the end of acceleration, during deceleration, or for an unexpected disturbance input. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system, in which a small auxiliary mass is installed on the spreader. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. In many cases, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called "Structure/Control Simultaneous Method" is used. From this, in this paper the simultaneous design method is used to achieve optimal system performance. And the experimental result shows that the proposed control strategy is useful, to the case of that the controlled system is exposed to the uncertainties and, robust to disturbances like wind.

오버헤드셔틀시스템의 동특성해석 및 잔류진동제어 (Dynamics Analysis and Residual Vibration Control of an Overhead Shuttle System)

  • 박명욱;김경한;;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.445-452
    • /
    • 2016
  • This paper discusses the dynamics and control problem of an overhead shuttle system (OSS), which is a critical part of the automated container terminal at a port. The main purpose of the OSS is efficient automated transport function of containers, which also requires high precision and safety. A major difference between the OSS and the conventional container crane is the configuration of the cables for hoisting the spreader. A mathematical model of the OSS is developed here for the first time, which results in an eight-pole system. Also, open loop control methods (trapezoidal and notch-type velocity profiles) are investigated so that the command input to the overhead shuttle produces the minimum possible sway of the payload. Simulation results show that the vibration suppression capability of the OSS is superior to the conventional overhead container crane, which is partially due to the cable configuration.