• 제목/요약/키워드: Residual Structure

검색결과 1,069건 처리시간 0.022초

A new lightweight network based on MobileNetV3

  • Zhao, Liquan;Wang, Leilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2022
  • The MobileNetV3 is specially designed for mobile devices with limited memory and computing power. To reduce the network parameters and improve the network inference speed, a new lightweight network is proposed based on MobileNetV3. Firstly, to reduce the computation of residual blocks, a partial residual structure is designed by dividing the input feature maps into two parts. The designed partial residual structure is used to replace the residual block in MobileNetV3. Secondly, a dual-path feature extraction structure is designed to further reduce the computation of MobileNetV3. Different convolution kernel sizes are used in the two paths to extract feature maps with different sizes. Besides, a transition layer is also designed for fusing features to reduce the influence of the new structure on accuracy. The CIFAR-100 dataset and Image Net dataset are used to test the performance of the proposed partial residual structure. The ResNet based on the proposed partial residual structure has smaller parameters and FLOPs than the original ResNet. The performance of improved MobileNetV3 is tested on CIFAR-10, CIFAR-100 and ImageNet image classification task dataset. Comparing MobileNetV3, GhostNet and MobileNetV2, the improved MobileNetV3 has smaller parameters and FLOPs. Besides, the improved MobileNetV3 is also tested on CPU and Raspberry Pi. It is faster than other networks

반복 하중을 받는 용접 구조물의 잔류 응력 저감 파악을 위한 유한요소 해석 및 실험적 연구 (Experiments and Finite Element Analysis for the Estimation of Stress Relief in Welded Structures)

  • 양용식;강중규;이장현;김성찬;황세윤
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.238-245
    • /
    • 2011
  • Welding inevitably introduces the residual stresses which affect the fatigue strength of the joint structure. The mitigation of fatigue strength depends on the residual stress magnitude and distribution. Stress relief analyses are of practical interest for all cyclic loaded welded structures, such as ships and offshore structures. In order to estimate the effects of relaxation of residual stresses in the welded structure, this paper presents a finite element analysis procedure and experimental results for the welded structure. Cruciform specimens joint by MAG welding have been tested to measure the released stress. Relieved welding residual stresses obtained by finite element analysis are compared with those measured by experiment.

마이크로머시닝 기술에 의해 형성된 막에 있어서의 잔류응력 추정 (Estimation of Residual Stresses in Micromachined Films)

  • 민영훈;김용권
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.354-359
    • /
    • 2000
  • A new method of measuring residual stress in micromachined film is proposed. An estimation of residual stress is performed by using least squares fit with an appropriate deflection modeling. an exact value of residual stress is obtained without any of the ambiguities that exist in conventional buckling method, and a good approximation is also obtained by using a few data points. Therefore, the test structures area could be greatly decreased by using this method. The measurement can be done more easily and simply without any actuation or any specific measuring equipment. The structure and fabrication processes described in this paper are simple and widely used in surface micromachining. In addition, in-situ measurement is available by using the proposed method when the test structure and the measurement structure are fabricated on a wafer simultaneously.

  • PDF

변형된 잔차블록을 적용한 CNN (CNN Applied Modified Residual Block Structure)

  • 곽내정;신현준;양종섭;송특섭
    • 한국멀티미디어학회논문지
    • /
    • 제23권7호
    • /
    • pp.803-811
    • /
    • 2020
  • This paper proposes an image classification algorithm that transforms the number of convolution layers in the residual block of ResNet, CNN's representative method. The proposed method modified the structure of 34/50 layer of ResNet structure. First, we analyzed the performance of small and many convolution layers for the structure consisting of only shortcut and 3 × 3 convolution layers for 34 and 50 layers. And then the performance was analyzed in the case of small and many cases of convolutional layers for the bottleneck structure of 50 layers. By applying the results, the best classification method in the residual block was applied to construct a 34-layer simple structure and a 50-layer bottleneck image classification model. To evaluate the performance of the proposed image classification model, the results were analyzed by applying to the cifar10 dataset. The proposed 34-layer simple structure and 50-layer bottleneck showed improved performance over the ResNet-110 and Densnet-40 models.

Application of welding simulation to block joints in shipbuilding and assessment of welding-induced residual stresses and distortions

  • Fricke, Wolfgang;Zacke, Sonja
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.459-470
    • /
    • 2014
  • During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.

The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

  • Park, Jeong-ung;An, Gyubaek;Woo, Wanchuck
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.129-140
    • /
    • 2018
  • A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress). In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180 MPa, while in case of thickness at 70 mm, it was 200 MPa. The increase in compressive residual stress is almost the same as the initial stress. However, if initial stress was tensile, there was no significant change in the maximum compression residual stress.

주조 프레임을 강 구조물로의 대체에 관한 연구 (A Study on Substitution of Steel structure for Casting Frame)

  • 홍민성
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.142-149
    • /
    • 1999
  • A machine frame has been manufactured by casting. However, due to the development of the industrial society, 3-D duties was refused. Especially, the declination of the casting industry makes it difficult to produce the frame. Many companies still manufacture the small casting products. The large casting products are extremely limited and manufactured for their own use. Therefore, it is difficult to keep the term of order. In this study, the characteristics of steel structure which is produced by welding were identified in the view of mechanical strength of steel structure which is produced by welding were identified in the view of mechanical strength to substitute steel structure for casting frame. But welding structure has the residual stress, HAZ and welding deformation. Residual stress and HAZ especially cause crack growth. The proposed steel structure, based on the simulation and experiment(tensile curve and S-N curve), can reduce not only the producting term but also the weight of the frame.

  • PDF

Residual displacement estimation of simple structures considering soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.69-82
    • /
    • 2019
  • As the residual displacement and/or drift demands are commonly used for seismic assessment of buildings, the estimation of these values play a very critical role through earthquake design philosophy. The residual displacement estimation of fixed base structures has been the topic of numerous researches up to now, but the effect of soil flexibility is almost always omitted. In this study, residual displacement demands are investigated for SDOF systems with period range of 0.1-3.0 s for near-field and far-field ground motions for both fixed and interacting cases. The elastoplastic model is used to represent non-degrading structures. Based on time history analyses, a new simple yet effective equation is proposed for residual displacement demand of any system whether fixed base or interacting as a function of structural period, lateral strength ratio and spectral displacement.

컨테이너 크레인 붐 구조물의 잔존수명 예측을 위한 컴퓨터 시뮬레이션 (Computer Simulation for Residual Life Expectancy of a Container Crane Boom Structure)

  • 김상열;배형섭;이육형;박명관
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.119-129
    • /
    • 2007
  • The residual life expectancy of the container crane which has been operated more or less 39 years is examined carefully, especially on the boom structure. The basic load and load combination need to be considered for to analyse the boom structure. Various parts of container crane are modeled for to analyse stress, the deflection and the fatigue. Analysis results show that the boom is stable in the stress and deflection but the boom vertical member is over the fatigue life. The rail support beam and boom bottom chord are approximately near the fatigue life. Analysis results show that the residual life of rail support beam and the boom bottom chord would be 2.2 years and 6.8 years, respectively.

기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구 (A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.