• Title/Summary/Keyword: Residual Flow

Search Result 602, Processing Time 0.031 seconds

A Study of Carry Over Contamination in Chematology (이월오염에 대한 연구)

  • Chang, Sang-Wu;Kim, Nam-Yong;Lyu, Jae-Gi;Jung, Dong-Jin;Kim, Gi-You;Park, Yong-Won;Chu, Kyung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.178-184
    • /
    • 2005
  • Carry over contamination has been reduced in some systems by flushing the internal and external surfaces of the sample probe with copious amount of diluent. It between specimens should be kept as small as possible. A built-in, continuous-flow wash reservoir, which allows the simultaneous washing of the interior and exterior of the syringe needles, addresses this issue. In addition, residual contamination can further be prevented through the use of efficient needle rinsing procedures. In discrete systems with disposable reaction vessels and measuring cuvets, any carry over is entirely caused by the pipetting system. In analyzers with reuseable cuvets or flow cells, carry over may arise at every point through which high samples pass sequentially. Therefore, disposable sample probe tips can eliminate both the contamination of one sample by another inside the probe and the carry over of in specimen into the specimen in the cup. The results of the applicative carry over experiment studied on 21 items for total protein (TP), albumin (ALB), total bilirubin (TB), alkaline phosphatase (ALP), aspratate aminotranferase (AST), alanine aminotranferase (ALT), gamma glutamyl transferase (GGT), creatinine kinase (CK), lactic dehydrogenase (LD), creatnine (CRE), blood urea nitrogen (BUN), uric acid (UA), total cholesterol (TC), triglyceride (TG), glucose (GLU), amylase (AMY), calcium (CA), inorganic phosphorus (IP), sodium (Na), potassium (K), chloride (CL) tests in chematology were as follows. Evaluation of process performance less than 1% in all tests was very good, but a percentage of ALB, TP, TB, ALP, CRE, UA, TC, GLU, AMY, IP, K, Na, and CL was 0%, implying no carry over. Other tests were ALT(-0.08%), GGT(-0.09%), CK(0.08%), LD(0.06%), BUN(0.12%), TG (-0.06%), and CA(0.89%).

  • PDF

Comparison & Analysis for Fine Sand Migration in Filter (조립 Filter내에서 세상의 이동현상에 대한 비교분석)

  • Kim, Hyun-Ki;Kwon, Moo-Nam
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.15-23
    • /
    • 1998
  • This experiment did comparison and analysis that protected soil particle migration have affect on function of the filter and therefore fall function of the filter. Results obtained are as follows: 1.High water head makes to be much movement of fine sand and out flow of particle to the outside. The filter have large opening size that reached stability an early stage, but much fine sand is washed away. If the velocity turns fast and becomes small, blocking phenomenon is remarkable nearby the filter-sand interface. 2. The movement of fine sand that effect on function of filter depend on opening size and change of water head. Under the same condition, USCE filter and USSPL filter is reached earlier than other filter that is stability of stage, because it's opening size is large. 3. Residual quantity of fine sand migration was largly come out in order of USSPL, USCE, USBR, Newton & Hurley, Bertram filter. 4. The time required to stability of flow was taken less in order of Bertram, Newton & Hurley, USBR, USSPL, USCE filter and coefficient of permeability was highly come out in order of USBR, Bertram, Newton & Hurley, USSPL, USCE filter. 5. It proved that USCE and USSPL is suitable for the filter criteria.

  • PDF

Comparative study on cleaning effects of air scouring and unidirectional flushing considering water flow direction of water pipes (상수도관의 물 흐름 방향을 고려한 공기주입 세척 및 단방향 플러싱 공법의 세척 효과 비교 연구)

  • Seo, Jeewon;Lee, Gyusang;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.353-366
    • /
    • 2019
  • This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of $4.9m^3$ yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.

Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea (동해안 석호 담염수 혼합대에서 지하수와 지표수 상호작용의 수리지질학적 특성 평가)

  • Jeon, Woo-Hyun;Kim, Dong-Hun;Lee, Soo-Hyoung;Hwang, Seho;Moon, Hee Sun;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.144-156
    • /
    • 2021
  • This study examined hydrogeological characteristics of groundwater and surface water interaction in the fresh-saline water mixed zone of East Coast lagoon area, Korea, using several technical approaches including hydrological, lithological, and isotopic methods. In addition, the fresh-saline water interface was evaluated using vertical electrical conductivity (EC) data. For this purpose, three monitoring wells (SJ-P1, SJ-P2, and SJ-P3) were installed across the Songji lagoon at depths of 7.4 to 9.0 m, and water level, EC, and temperature at the wells and in the lagoon (SJ-L1) were monitored using automatic transducers from August 1 to October 21, 2021. Isotopic composition of the groundwater, lagoon water, and sea water were also monitored in the mid-September, 2013. The mixing ratios calculated from oxygen and hydrogen isotopic composition decreased with increasing depth in the monitoring wells, indicating saline water intrusion. In the study area, the interaction of groundwater-surface water-sea water was evident, and residual salinity in the sedimentary layers created in the past marine environment showed disorderly characteristics. Moreover, the horizontal flow at the lagoon's edge was more dominant than the vertical flow.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Effect of Volatile Matter and Oxygen Concentration on Tar and Soot Yield Depending on Coal Type in a Laminar Flow Reactor (LFR에서 탄종에 따른 휘발분과 산소농도가 타르와 수트의 발생률에 미치는 영향)

  • Jeong, Tae Yong;Kim, Yong Gyun;Kim, Jin Ho;Lee, Byoung Hwa;Song, Ju Hun;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1034-1042
    • /
    • 2012
  • This study was performed by using an LFR (laminar flow reactor), which can be used to carry out different types of research on coal. In this study, an LFR was used to analyze coal flames, tar and soot yields, and structures of chars for two coals depending on their volatile content. The results show that the volatile content and oxygen concentration have a significant effect on the length and width of the soot cloud and that the length and width of the cloud under combustion conditions are less than those under a pyrolysis atmosphere. At sampling heights until 50 mm, the tar and soot yields of Berau (sub-bituminous) coal, which contains a large amount of volatile matter, are less than those of Glencore A.P. (bituminous) coal because tar is oxidized by the intrinsic oxygen component of coal and by radicals such as OH-. On the other hand, at sampling heights above 50 mm, the tar and soot yields of Berau coal are higher than those of Glencore A.P. coal by reacted residual volatile matter, tar and light gas in char and flame. With above results, it is confirmed that the volatile matter content and the intrinsic oxygen component in a coal are significant parameters for length and width of the soot cloud and yields of the soot. In addition, the B.E.T. results and the images of samples (SEM) obtained from the particle separation system of the sampling probe support the above results pertaining to the yields; the results also confirm the pore development on the char surface caused by devolatilization.

Correlation of Tracheal Cross-sectional Area with Parameters of Pulmonary Function in COPD (만성 폐쇄성 폐질환에서 기관의 단면적과 폐기능지표와의 상관관계)

  • Lee, Chan-Ju;Lee, Jae-Ho;Song, Jae-Woo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Chung, Hee-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 1999
  • Background : Maximal expiratory flow rate is determined by the size of airway, elastic recoil pressure and the collapsibility of airway in the lung. The obstruction of expiratory flow is one of the major functional impairments of emphysema, which represents COPD. Nevertheless, expiratory narrowing of upper airway may be recruited as a mechanism for minimizing airway collapse, and maintaining lung volume and hyperinflation by an endogenous positive end-expiratory pressure in patients with airflow obstruction. We investigated the physiologic role of trachea in respiration in emphysema. Method : We included 20 patients diagnosed as emphysema by radiologic and physiologic criteria from January to August in 1997 at Seoul Municipal Boramae Hospital. Chest roentgenogram, high resolution computed tomography(HRCT), and pulmonary function tests including arterial blood gas analysis and body plethysmography were taken from each patient. Cross-sectional area of trachea was measured according to the respiratory cycle on the level of aortic arch by HRCT and calibrated with body surface area. We compared this corrected area with such parameters of pulmonary function tests as $PaCO_2$, $PaO_2$, airway resistance, lung compliance and so on. Results : Expiratory cross-sectional area of trachea had significant correlation with $PaCO_2$ (r=-0.61, p<0.05), $PaO_2$ (r=0.6, p<0.05), and minute ventilation (r=0.73, p<0.05), but inspiratory cross-sectional area did not (r=-0.22, p>0.05 with $PaCO_2$, r=0.26, p>0.05 with $PaO_2$, and r=0.44, p>0.05 with minute ventilation). Minute ventilation had significant correlation with tidal volume (r=0.45, p<0.05), but it had no significant correlation with respiratory frequency (r=-0.31, p>0.05). Cross-sectional area of trachea had no significant correlation with other parameters of pulmonary function including $FEV_1$, FVC, $FEV_1$/FVC, peak expiratory flow, residual volume, diffusing capacity, airway resistance, and lung compliance, whether the area was expiratory or inspiratory. Conclusion : Cross-sectional area of trachea narrowed during expiration in emphysema, and its expiratory area had significant correlation with $PaCO_2$, $PaO_2$, and minute ventilation.

  • PDF

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF

The efficacy and safety of transcatheter closure of atrial septal defect with Amplatzer septal occluder in young children less than 3 years of age (3세 미만 심방중격결손 소아에서 Amplatzer 기구 폐쇄술의 안전성 및 효용성)

  • Lee, Soo Hyun;Choi, Deok Young;Kim, Nam Kyun;Choi, Jae Young;Sul, Jun Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.4
    • /
    • pp.494-498
    • /
    • 2009
  • Purpose : Applicability of transcatheter closure of atrial septal defect (ASD) has been expanded by accumulation of clinical experiences and evolutions of the device. This study was performed to evaluate the safety and efficacy of transcatheter closure of ASD with Amplatzer septal occluder (ASO) in young children less than 3 years of age. Methods : From May 2003 to December 2005, 295 patients underwent transcatheter closure of ASD with ASO in the Severance Cardiovascular Hospital, Yonsei University Health System. Among them, 51 patients less than 3 years of age were enrolled in this study. We investigated procedural success rate, rate of residual shunt, frequency of complications, procedure/fluoroscopy time, and need of modified techniques for device implantation. Results : The median age was 2.1 years and median body weight was 12 kg. Implantation of device was successful in 50 patients (98%). Seven patients (15%) showed a small residual shunt 1 day after the procedure, but complete occlusion had been documented at 6 month follow-up in all patients (100%). The pulmonary to systemic flow ratio (Qp/Qs), peak systolic pulmonary artery pressure, and peak systolic right ventricular pressure had decreased significantly after closure of ASD. There were 2 complications including device embolization (1, 2%) and temporary groin hematoma (1, 2%). Conclusion : Transcatheter closure of ASD with ASO can be performed with satisfactory results and acceptable risk even in young children less than 3 years of age. We could suggest that even in very young children with ASD, there is no need to wait until they grow to a sufficient size for the transcatheter closure.

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.