• Title/Summary/Keyword: Residual Coding

Search Result 124, Processing Time 0.023 seconds

A Study on The Correction of The Channel Equalizer Decision Error Using Channel Estimator (채널추정기를 이용한 등화기 결정오류 정정 알고리즘에 관한 연구)

  • Kim, Seon-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.18-24
    • /
    • 2017
  • The process of transmitting messages through a medium with a limited bandwidth or channel dispersion inevitably involves signal distortion and noise influxes, resulting in the degradation of transmission quality due to the inter-symbol interference and additional noise, which increases the error rate of the received symbols. The main role of the equalizer is to remove the channel distortion and noise from the received signal to recover the transmitted messages. A number of studies on the equalizer composed of a combination of linear filter and error control coding have shown that they played a key role in enhancing the transmission efficiency, which is essential for digital communication. This paper proposes a new algorithm to correct the residual symbol errors in the message signal. In general, equalizer performance improvement algorithms were developed to improve the initial convergence speed or steady-state error. In this paper, however, the equalizer input signal was reconstructed using the equalizer decision symbols and the channel estimates to directly correct the decision errors by analyzing the statistical characteristics of the difference signal between the actual received signal and the reconstructed signal.

Towards Group-based Adaptive Streaming for MPEG Immersive Video (MPEG Immersive Video를 위한 그룹 기반 적응적 스트리밍)

  • Jong-Beom Jeong;Soonbin Lee;Jaeyeol Choi;Gwangsoon Lee;Sangwoon Kwak;Won-Sik Cheong;Bongho Lee;Eun-Seok Ryu
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.194-212
    • /
    • 2023
  • The MPEG immersive video (MIV) coding standard achieved high compression efficiency by removing inter-view redundancy and merging the residuals of immersive video which consists of multiple texture (color) and geometry (depth) pairs. Grouping of views that represent similar spaces enables quality improvement and implementation of selective streaming, but this has not been actively discussed recently. This paper introduces an implementation of group-based encoding into the recent version of MIV reference software, provides experimental results on optimal views and videos per group, and proposes a decision method for optimal number of videos for global immersive video representation by using portion of residual videos.

Multi-user Diversity Scheduling Methods Using Superposition Coding Multiplexing (중첩 코딩 다중화를 이용한 다중 사용자 다이버시티 스케줄링 방법)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.332-340
    • /
    • 2010
  • In this paper, we deal with multi-user diversity scheduling methods that transmit simultaneously signals from multiple users using superposition coding multiplexing. These methods can make various scheduling methods be obtained, according to strategies for user selection priority from the first user to the first-following users, strategies for per-user power allocation, and resulting combining strategies. For the first user selection, we consider three strategies such as 1) higher priority for a user with a better channel state, 2) following the proportional fair scheduling (PFS) priority, 3) higher priority for a user with a lower average serving rate. For selection of the first-following users, we consider the identical strategies for the first user selection. However, in the second strategy, we can decide user priorities according to the original PFS ordering, or only once an additional user for power allocation according to the PFS criterion by considering a residual power and inter-user interference. In the strategies for power allocation, we consider two strategies as follows. In the first strategy, it allocates a power to provide a permissible per-user maximum rate. In the second strategy, it allocates a power to provide a required per-user minimum rate, and then it reallocates the residual power to respective users with a rate greater than the required minimum and less than the permissible maximum. We consider three directions for scheduling such as maximizing the sum rate, maximizing the fairness, and maximizing the sum rate while maintaining the PFS fairness. We select the max CIR, max-min fair, and PF scheduling methods as their corresponding reference methods [1 and references therein], and then we choose candidate scheduling methods which performances are similar to or better than those of the corresponding reference methods in terms of the sum rate or the fairness while being better than their corresponding performances in terms of the alternative metric (fairness or sum rate). Through computer simulations, we evaluate the sum rate and Jain’s fairness index (JFI) performances of various scheduling methods according to the number of users.

Expression and Characterization of Calcium- and Zinc-Tolerant Xylose Isomerase from Anoxybacillus kamchatkensis G10

  • Park, Yeong-Jun;Jung, Byung Kwon;Hong, Sung-Jun;Park, Gun-Seok;Ibal, Jerald Conrad;Pham, Huy Quang;Shin, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.606-612
    • /
    • 2018
  • The enzyme xylose isomerase (E.C. 5.3.1.5, XI) is responsible for the conversion of an aldose to ketose, especially xylose to xylulose. Owing to the ability of XI to isomerize glucose to fructose, this enzyme is used in the food industry to prepare high-fructose corn syrup. Therefore, we studied the characteristics of XI from Anoxybacillus kamchatkensis G10, a thermophilic bacterium. First, the gene coding for XI (xylA) was inserted into the pET-21a(+) expression vector and the construct was transformed into the Escherichia coli competent cell BL21 (DE3). The expression of recombinant XI was induced in the absence of isopropyl-thio-${\beta}$-galactopyranoside and purified using Ni-NTA affinity chromatography. The optimum temperature of recombinant XI was $80^{\circ}C$ and measurement of the heat stability indicated that 55% of residual activity was maintained after 2 h incubation at $60^{\circ}C$. The optimum pH was found to be 7.5 in sodium phosphate buffer. Magnesium, manganese, and cobalt ions were found to increase the enzyme activity; manganese was the most effective. Additionally, recombinant XI was resistant to the presence of $Ca^{2+}$ and $Zn^{2+}$ ions. The kinetic properties, $K_m$ and $V_{max}$, were calculated as 81.44 mM and $2.237{\mu}mol/min/mg$, respectively. Through redundancy analysis, XI of A. kamchatkensis G10 was classified into a family containing type II XIs produced by the genera Geobacillus, Bacillus, and Thermotoga. These results suggested that the thermostable nature of XI of A. kamchatkensis G10 may be advantageous in industrial applications and food processing.