• Title/Summary/Keyword: Residual Burial

Search Result 4, Processing Time 0.022 seconds

Hydrochemical Characteristics of Groundwater in an Area Affected by Pig Carcass Burial: Leakage Detection (돼지사체 매몰지역 지하수의 수지구화학 특성: 침출수 누출 판단)

  • Oh, Junseop;Kim, Ho-rim;Lee, Jeong-Ho;Kim, Kyoung-ho;Choi, Kwang-jun;Kim, Hyeon-Koo;Yun, Seong-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.30-40
    • /
    • 2018
  • To evaluate potential impacts of shallow groundwater by the leachate from buried carcass, we investigated hydrochemical characteristics of both leachate and shallow groundwater from monitoring wells and surrounding shallow groundwater wells in an area potentially affected by pig carcass burial. The hydrochemical survey was conducted before and after the relocation of a burial pit. The leachate samples and the groundwater affected by leachate showed the hydrochemistry of $Ca-HCO_3$ type with high $NH_4{^+}$ concentrations, while unaffected groundwater was mostly the $Ca(Na)-Cl+NO_3$ type due to pervasive impacts from agrochemicals. The results of factor analysis on hydrochemical data showed the followings: 1) contamination of groundwater from agro-livestock farming and livestock burial are coexisting in the study area, 2) among ionic species, $HCO_3{^-}$, $NH_4{^+}$, $NO_3{^-}$ and Mn are very useful to differentiate the groundwater contamination from leachate, and 3) groundwater contamination by leachate has been recognized around the monitoring wells even after the relocation of a burial pit, likely due to residual contaminants in surrounding soils. Therefore, it is suggested that continued monitoring of groundwater contamination should be conducted after the relocation of carcass burial pits.

Characteristics of Shell-Residual Soil Mixture Deformation by Cyclic Loading (반복재하에 의한 고막껍질-풍화잔류토 혼합토의 변형 특성)

  • Chang, Yong-Chai;Seo, Ji-Woong;Lee, Seung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.47-55
    • /
    • 2009
  • This research has the purpose to examine the potential of shell, a byproduct of maritime products to be utilized as alternative environment-friendly construction material by mixing and applying it with residual soit which is used as burial or filling material to recycle it. To that end, the research looked into the mechanical characteristics of shell through cyclic triaxial test by mixing it with residual soil. With the mixing ratios of shell of 5 groups set at 5.0%, 10.0%, 20.0%, 40.0% and 60.0%, the mixture soils was processed through a series of cyclic triaxial tests. And it was shown that liquefation resistance has limitation in the mixed soils with shell substitute content ratios exceeding 20.0%. To increase the liquefaction resistance of the mixed soil, this research has shown that addition of moderate amount of glass fibers would suffice.

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

Phosphorous Removal in a Free Water Surface Wetland Constructed on the Gwangju Stream Floodplain (광주천 고수부지에 조성한 자유수면인공습지의 인 제거)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • Removal rates of $PO_4-P$ and TP in a free water surface wetland system were investigated. The system was established in 2008 on a floodplain in the middle reach of the Gwangju Stream flowing through Gwangju City. Its dimensions were 46 meters in length and 5 meters in width. Two year old Typha angustifloria L. growing in pots were planted on half of the area and Zizania latifolia Turcz on the other half in 2008. Stream water was funneled into the wetlands by gravity flow, and its effluent was discharged back into the stream. The influent volume was controlled by valves and water depth was adjusted by wires. Volume and water quality of inflow and outflow were analyzed from January to December in 2010. Inflow into the system averaged approximately $710m^3/day$ and hydraulic residence time was about 1.5 hours. Average influent and effluent $PO_4-P$ concentration were 0.144 and 0.103mg/L, respectively, and $PO_4-P$ abatement amounted to 28.6%. Influent and effluent TP concentration averaged 0.333 and 0.262mg/L, respectively, and TP retention reached to 20.7%.$PO_4-P$ removal rate(%) during plant growing season(31.448) was significantly high(p<0.001) when compared with that during plant non-growing season(25.829). TP abatement rate(%) during plant growing season(27.230) was also significantly high(p<0.001) when compared with that of the non-growing season(14.856). Major phosphorous removals in the system resulted from adsorption of phosphorous in the litter-soil layers; sedimentation of particulate phosphorous and Ca, Al, Fe bounded phosphates; and absorption of phosphorous by emergent plants. The adsorption and sedimentation occurred throughout the year, however, the absorption took place during plant growing season. This resulted in higher removals of $PO_4-P$ and TP during plant growing season.