• Title/Summary/Keyword: Residual Blocks

Search Result 83, Processing Time 0.021 seconds

Fast Disparity Vector Estimation using Motion vector in Stereo Image Coding (스테레오 영상에서 움직임 벡터를 이용한 고속 변이 벡터 추정)

  • Doh, Nam-Keum;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.56-65
    • /
    • 2009
  • Stereoscopic images consist of the left image and the right image. Thus, stereoscopic images have much amounts of data than single image. Then an efficient image compression technique is needed, the DPCM-based predicted coding compression technique is used in most video coding standards. Motion and disparity estimation are needed to realize the predicted coding compression technique. Their performing algorithm is block matching algorithm used in most video coding standards. Full search algorithm is a base algorithm of block matching algorithm which finds an optimal block to compare the base block with every other block in the search area. This algorithm presents the best efficiency for finding optimal blocks, but it has very large computational loads. In this paper, we have proposed fast disparity estimation algorithm using motion and disparity vector information of the prior frame in stereo image coding. We can realize fast disparity vector estimation in order to reduce search area by taking advantage of global disparity vector and to decrease computational loads by limiting search points using motion vectors and disparity vectors of prior frame. Experimental results show that the proposed algorithm has better performance in the simple image sequence than complex image sequence. We conclude that the fast disparity vector estimation is possible in simple image sequences by reducing computational complexities.

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

Shear bond strength and adhesive failure pattern in bracket bonding with plasma arc light (Plasma arc light를 이용한 bracket 부착시의 전단결합강도와 파절양상의 유형)

  • Yoo, Hyung-Seok;Oh, Young-Geun;Lee, Seung-Yeon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.261-270
    • /
    • 2001
  • The purpose of this study was to evaluate the clinical usefulness of plasma arc light which can reduce the curing time dramatically compared by shear bond strengths and failure patterns of the brackets bonded with visible light in direct bracket bonding. Some kinds of brackets were bonded with the Transbond$^{\circledR}$ to the human premolars which were embedded in the resin blocks according to the various conditions. After bonding, the shear bond strength was tested by Instron universal testing machine and in addition , the amount of residual adhesive remaining on the tooth after debonding was measured by the stereoscope and assessed with adhesive remnant index(ARI). The results were as follows : 1. When plasma arc light was used for bonding the brackets, the shear bond strength was clinically sufficient in both metal and ceramic brackets, but resin brackets showed significantly lower bond strength but which was clinically useful. 2. When metal brackets were bonded using visible light, there was no significant difference in shear bond strength due to the light-curing time and the bond strength was clinically sufficient. 3. When the adhesive failure patterns of brackets bonded with plasma arc light were observed by using the adhesive remnant index, the bond failure of the metal and resin bracket occurred more frequently at bracket-adhesive interface but the failure of the ceramic bracket occurred more frequently at enamel-adhesive interface. 4. There was no statistically significant difference of the shear bond strength and adhesive failure pattern between metal bracket bonded for 2 seconds by curing with plasma arc light and 10 seconds by curing with visible light. 6. When metal brackets were bonded using plasma arc light, the shear bond strength decreased as the distance from the light source increased. The above results suggest that plasma arc light can be clinically useful for bonding the brackets without fear of the decrease of the shear bond strength.

  • PDF