• Title/Summary/Keyword: Residual Bending Stress

Search Result 201, Processing Time 0.023 seconds

Prediction of Residual Deformation and Stress Distribution for a Thermo-Elastic-Plastic Beam Using a Simplified Numerical Analysis (간이 수치해석에 의한 열탄소성보의 잔류변형 및 응력분포의 예측)

  • S.H. Jun;K. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.22-34
    • /
    • 1996
  • Regarding the plate bending process by line heating method, in this study a simplified numerical analysis is performed for a beam model to predict its residual deformation and stress distribution. Using the modified strip theory and beam finite element method, a PC-based simulation program is developed for a thermo-elastic-plastic beam. The plate bending problem can be approximately replaced by a beam model using distributed springs to account for the effect of adjacent strips. The spring constants are chosen as the best fit with experiments. In this paper, it is assumed that the temperature distribution is already given and the temperature-dependent material properties are considered. To verify the simulation program, the results using present numerical algorithm are compared with other published experimental results and similar numerical studies. The comparison shows good agreement. The present PC-based computer program also shows good efficiency in computing time.

  • PDF

Removal of Residual Stress and In-vitro Recording Test in Polymer-based 3D Neural Probe (폴리머 기반 3차원 뉴런 프로브의 잔류 스트레스 제거 및 생체 외 신호 측정)

  • Nam, Min-Woo;Lim, Chun-Bae;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.33-42
    • /
    • 2009
  • A polymer-based flexible neural probe was fabricated for monitoring of neural activities from a brain. To improve the insertion stiffness, a 5 ${\mu}m$ thick biocompatible Au layer was electroplated between the top and bottom polymer layers. The developed neural probe penetrated a gel whose elastic modulus is similar to that of a live brain tissue without any fracture, To minimize mechanical residual stress and bending from the probe, two new methods were employed: (1) use of a thermal annealing process after completing the device and (2) incorporation of multiple different layers to compensate the residual stress between top and bottom layers. Mechanical bending around the probe tip was clearly removed after employing the two processes. In electrical test, the developed probe showed a proper impedance value to record neural signals from a brain and the result remained the same for 72 hours. In simple in-vitro probe characterization, the probe showed a great removal of residual stress and an excellent recording performance. The in-vitro recording results did not change even after 1 week, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

  • PDF

A study on reduction of pre-crack deviation in CTOD specimen using reverse bending method (Reverse Bending을 통한 CTOD 시험 예비균열 형상균일화에 관한 연구)

  • Jeong, Sehwan;Park, Dong-Hwan;Kim, Hyeon-Su;Shin, Sang-Beom;Park, Tae-Jong
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • This study investigates the appropriate range of reverse bending load for the CTOD test of thick weld by observing improvement of pre-crack shape and determination of the limit applicable load. In order to do it, the effect of the amount of the reverse bending load on the maximum deviation of the pre-crack length was investigated by the extensive tests, and the variation of plastic zone size in way of the crack tip under reverse bending load were evaluated by FEA. With the results obtained by the experiments and FEA, the proper range of reverse bending load was suggested. The effectiveness of the reverse bending method was verified by examining the pre-crack straightness after CTOD tests of thick weld specimens with various thickness and strength.

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.

An Analytical Study on Moment Response of Welded Steel Pipe for Loading Rate (재학속도에 따른 용접강관의 모멘트 응답특성에 관한 해석적 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This article aims to analytically research for influence of residual stresses on bending moment responses against welded steel pipes subjected to quasi -static or dynamic loadings. The residual stresses of the welded steel pipe are computed by three-dimensional welding simulation. The bending moment responses of the welded and seamless steel pipes are determined by using three-dimensional dynamic elastoplastic FE analysis as a function of loading rate. It is seen from analytical results that the welded steel pipe shows lower moment response comparing to the seamless steel pipe, and moment difference between seamless and welded steel pipes tends to decrease as loading rate increases.

Effect of Shot Peening on Fatigue Strength of JISG4081SUP7-DIN50CrV4 Steel (JISG4081SUP7-DIN50CrV4강의 피로강도에 미치는 쇼트피이닝의 영향)

  • 박경동;정찬기
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.66-72
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, two kinds of spring steel (JISG4081SUP7, DIN 50CrV4) are used. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from on low stress condition, the 1st stage shot peening is not affected by nonmetallic inclusion under metal. it is possible that the 2nd stage shot peening increases the fatigue life and the high stress but that is affected by nonmetallic inclusion under metal. so far beeasily DIN50CrV4 have made high stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

A study of model to improve the accuracy of Springback prediction on sheet metal forming (판재 성형품의 탄성회복예측 정밀도 향상을 위한 모델 연구)

  • Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.47-52
    • /
    • 2004
  • Springback comes from the release of residual stress after forming. The control of phenomenon is especially important in the sheet metal forming since there are no other practical methods available to correct the dimensional inaccuracy from springback. Therefore the accurate predication before the die machining has been a long goal in the Held of sheet metal forming. The aim of the present study is to enhance the prediction capability of finite element(FE) analysis for the springback phenomenon. For this purpose FE analysis for V-bending has been carried out with the commercial programs, LS-DYNA. The FE analysis results have been validated through the comparison of experimental. The experimental results measured directly by the strain gauge have given the confidence to FEA.

  • PDF

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-Wave Technique in the Longitudinal Direction (수축방향(樹軸方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • This study was performed to investigate the feasibility of using sonic stress-wave technique in the longitudinal direction for the assessment of incipient decay of radiata pine wood. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested nondestructively using stress-wave technique in the longitudinal direction and destructively. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, stress-wave elasticity) measured by stress-wave technique in the longitudinal direction and their percent reduction due to decay.

  • PDF

A Study on the Measurement of Bending Constraint Force of STS304 Thin Plate Using The Load Cell (로드셀을 이용한 STS304 박판용접부의 굽힘구속력과 잔류응력 측정에 관한 연구)

  • Kim, Jae-On;Park, Hee-Sang;Ko, Jun-Bin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.86-93
    • /
    • 2007
  • The restraint force is required for the accurate measurement and analysis to protect weldment from residual stress. Also, this residual stress caused by cracks in weldments is often observed in the weldments of large size nozzles or radial tanks after welding. This paper is preformed to evaluate the welding restraint forces using load cell with STS304 thin plate which is used as the pressure vessel steel in the industry field. As a result, as the welding currents are higher and the welding speeds are more slowly, the magnitude of restraint force in process of the flat plate welding shows to be more large.

Analysis of Rolling Contact fatigue for PM-High Speed Steel by X-ray Diffraction (X선회절에 의한 분말 고속도공구강의 구름접촉피로 해석)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.44-49
    • /
    • 2000
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior peformance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PM-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on supersaturated carbon in PM-HSS.

  • PDF