• 제목/요약/키워드: Reservoir water balance

검색결과 128건 처리시간 0.022초

농업용 저수지 설계를 위한 저수량 최적화 모형의 개발 (Development of the Optimal Reservoir Storage Determination Model for Supplying Rural Water)

  • 정하우;박태선;최진용
    • 한국농공학회지
    • /
    • 제40권2호
    • /
    • pp.69-80
    • /
    • 1998
  • The optimal reservoir storage capacity is needed to be determined at the stage of reservoir planning. The reservoir storage capacity should be based on water balance between demand and supply, and meet the water deficity during the growing season. However, the optimal reservoir storage capacity should be determined considering benefit-cost analysis for the project. In this study, Two models are developed. The one is the RSOM(Reservoir Storage Optimization Model), that is consisted by three submodels, MROPER (Modified Reservoir OPERation model), RESICO(REservoir SIze and the construction COst computation) model. And the other is the BECA(BEnefit-Cost Anaysis) model. For model application, three districts, Chungha, Ipsil and Edong were selected. The relative difference of B/C ratio between project planning data and estimation by RSOM is 17.9, 15.0 and 7.3% respectively, which may be applicable for water resources development feasibility planning.

  • PDF

수문자료 빈곤지역에서의 저수지 규모 결정 모의 모형 개발 (Development of a Simulation Model for Reservoir Sizing in a Region with Insufficient Hydrological Data)

  • 최진규
    • 한국농공학회지
    • /
    • 제42권4호
    • /
    • pp.67-75
    • /
    • 2000
  • A simulation model for reservoir sizing was developed to be applied in a region with insufficient hydrological data. Reservoir storage balance equation was formulated on a monthly basis. Gajiyama equation was generalized to estimate monthly reservoir inflow more accurately. Monthly evaporation equation on a reservoir water surface was introduced , which was functioned with monthly mean temperature. Generalized Gajiyama equation was applied to estmate reservoir inflow of the Sayeon dam. Nash-Sutcliffe's model efficiency was 0.793. Using developed model for reservoir sizing, water supply capacity was analyzed with 118.000㎥/day on the Sayeon dam. This showed a reasonable result as compared with 110000㎥/day in other technical report. For general application of developed model, a virtual reservoir was considered and its dta of surface area and volume by elevation was prepared using DEM. Using the model, size of reservoir was determined and water supply capacity was anlayzed on a virtual reservoir.

  • PDF

저수지 관개 광역 논의 영양물질 수지 분석 (Analysis of Nutrient Load Balance in the Reservoir Irrigated Paddy Block)

  • 송정헌;강문성;송인홍;황순호;박지훈;전상민;김계웅;장정렬
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.167-175
    • /
    • 2013
  • The objective of this study was to investigate the nutrient load balance in the reservoir irrigated paddy block during growing seasons. Idong reservoir irrigation paddy block of 10.3 ha in size was selected to collect hydrologic and water quality data. Irrigation, canal flows, and paddy field drainage were measured using a water level gauge, while water samples were collected and analysed for water quality. The water balance analysis showed that 81 % and 75 % of total outflow were through paddy and irrigation canal drainage during 2011 and 2012, respectively. The water quality of paddy field drainage varied greatly depending on rice cultivation stage ranging from 0.05 to 24.55 mg/L and from 0.01 to 0.76 mg/L for T-N and T-P, correspondently. Paddy field drainage loads during May through June account for 64 % and 76 % in 2012 and 2013, while 82 % and 81 % for T-P in 2011 and 2012, respectively. The Pearson correlation analysis showed that rainfall was significantly correlated with nutrient loads during July through August due to runoff, and irrigation was related with nutrient loads of drainage during some period of July through September due to irrigation return flow. This study results showed characteristics of inflow and outflow nutrient loads from plentiful irrigated paddy block.

염분수지 및 EFDC 모형을 이용한 간척 담수화호 염도변화모의 (Assessing Temporal and Spatial Salinity Variations in Estuary Reservoir Using EFDC)

  • 성충현
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.139-147
    • /
    • 2014
  • Forecasting salinity in an estuary reservoir is essential to promise irrigation water for the reclaimed land. The objective of the research was to assess salinity balance and its temporal and spatial variations in the Iwon estuary reservoir which has been issued by its high contents of salinity in spite of desalination process for four years. Seepage flows through the see dikes which could be one of possible reason of high salinity level of the reservoir was calculated based on the salinity balance in the reservoir, and used as input data for salinity modeling. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was used to simulate salinity level in the reservoir. The model was calibrated and validated based on weekly or biweekly observed salinity data from 2006 to 2010 in four different locations in the reservoir. The values of $R^2$, RMSE and RMAE between simulated and observed salinity were calculated as 0.70, 2.16 dS/m, and 1.72 dS/m for calibration period, and 0.89, 1.15 dS/m, and 0.89 dS/m for validation period, respectively, showing that simulation results was generally consistent with the observation data.

개방형 물관리 프로그램을 이용한 관개용 저수지의 거동 분석 (Behaviour Analysis of Irrigation Reservoir Using Open Water Management Program)

  • 김선주;김필식;임창영
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.3-13
    • /
    • 2004
  • For optimal irrigation reservoir operation during flood and normal period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. We developed Open Water Management Program (OWMP) with an open architecture to deal with newly arising upgrade problems for optimal management of irrigation reservoir. And we evaluated the applicability of OWMP to estimate daily runoff from an agricultural watershed including irrigation reservoirs, and analyzed behaviour of irrigation reservoirs as irrigation water requirements considering frequency analysis of reservoir storage and frequency analysis water requirements for effective management of reservoir. When we executed OWMP with data produced from an experimental field, IHP basins, the mean relative errors of application of daily runoff and irrigation water requirement were less than 5%. We also applied OWMP to a Seongju irrigation reservoir to simulate daily runoff, storage and water requirement from 1998 to 2002, and the mean model efficiency between measured and simulated value was 0.76. Our results based on the magnitude of relative errors and model efficiency of the model simulation indicate that the OWMP can be a tool nicely adapted to the effective water management of irrigation reservoir for beneficial water use and flood disaster management.

대전 갑천의 유지유량 확보 방안 (Planning for Securing Instreamflow of Gapcheon Stream in Daejeon)

  • 노재경
    • 농업과학연구
    • /
    • 제36권1호
    • /
    • pp.87-98
    • /
    • 2009
  • 대전 3대 하천의 하나인 갑천의 유등천 합류전 지점의 하천유지유량 확보를 위해 상류 유역에 금곡지와 괴곡지를 각각 설치하는 경우 각각 장안지, 방동지의 기존 저수지를 포함하여 직렬, 병렬 연계 운영을 반영하여 목표 지점의 유량을 1966년부터 2007년까지 모의하여 효과를 분석한 결과 다음과 같다. 첫째, 방동지-금곡지 직렬 연계에 의해 금곡지로부터 용수공급능력을 분석한 결과 연평균하여 하천유지유량 공급량은 6.83백만 $m^3$, 용수공급량/유역면적은 403.4 mm, 단위유역 용수공급량/강우량 비율은 33.0 %, 용수공급량/유입량 비율은 96.4 %, 용수공급량/저수량 비율은 81.9 %, 유입량/저수량 비율은 112.3 %였다. 둘째, 장안지-금곡지 병렬 연계를 고려한 갑천지점의 유량을 분석한 결과 유황은 연평균하여 풍수량 $4.806m^3/s$, 평수량 $2.217m^3/s$, 저수량 $1.140m^3/s$, 갈수량 $0.887m^3/s$로 분석되었으며, 평균갈수량은 목표유량 $1.486m^3/s$보다 $0.599m^3/s$ 적게 나타났다. 셋째, 장안지-방동지 병렬 연계에 의해 괴곡지 유입량을 모의하였고, 괴곡지로부터 용수공급능력을 분석한 결과 연평균하여 하천유지유량 공급량은 49.60백만 $m^3$, 용수공급량/유역면적은 246.5 mm, 단위유역 용수공급량/강우량 비율은 19.4 %, 용수공급량/유입량 비율은 40.8 %, 용수공급량/저수량 비율은 412.1 %, 유입량/저수량 비율은 1,189.8 %였다. 넷째, 괴곡지 방류를 고려한 갑천 지점의 유량을 분석한 결과 유황은 연평균하여 풍수량 $4.501m^3/s$, 평수량 $2.277m^3/s$, 저수량 $1.743m^3/s$, 갈수량 $1.564m^3/s$로 분석되었으며, 평균갈수량은 목표유량 $1.486m^3/s$보다 $0.078m^3/s$ 높게 나타났다. 요약하면 괴곡지를 설치하는 것이 금곡지를 설치하는 것보다 갑천 지점의 하천유지유량을 확보하는데 효율성이 높은 것으로 분석되었다.

  • PDF

농업용수 유역 물수지 분석 모델 개발 및 적용 (Development and Application of Water Balance Network Model in Agricultural Watershed)

  • 윤동현;남원호;고보성;김경모;조영준;박진현
    • 한국농공학회논문집
    • /
    • 제66권3호
    • /
    • pp.39-51
    • /
    • 2024
  • To effectively implement the integrated water management policy outlined in the National Water Management Act, it is essential to analyze agricultural water supply and demand at both basin and water district levels. Currently, agricultural water is primarily distributed through open canal systems and controlled by floodgates, yet the utilization-to-supply ratio remains at a mere 48%. In the case of agricultural water, when analyzing water balance through existing national basin water resource models (K-WEAP, K-MODISM), distortion of supply and regression occurs due to calculation of regression rate based on the concept of net water consumption. In addition, by simplifying the complex and diverse agricultural water supply system within the basin into a single virtual reservoir, it is difficult to analyze the surplus or shortage of agricultural water for each field within the basin. There are limitations in reflecting the characteristics and actual sites of rural water areas, such as inconsistencies with river and reservoir supply priority sites. This study focuses on the development of a model aimed at improving the deficiencies of current water balance analysis methods. The developed model aims to provide standardized water balance analysis nationwide, with initial application to the Anseo standard watershed. Utilizing data from 32 facilities within the standard watershed, the study conducted water balance analysis through watershed linkage, highlighting differences and improvements compared to existing methods.

댐 방류조건에 따른 저수지 유속과 수온 영향 (The Effect of Current and Temperature of a Reservoir by the Simulation of Dam Outflow)

  • 유순주;하성룡;정동일
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1060-1067
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom due to nutrient supply from the upstream of the Daecheong reservoir after heavy rainfall. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir according to the hydrological conditions. This study is aimed to estimate the water current and temperature effect by the simulation of dam spill flow control using water quality model, CE-QUAL-W2 in 2003. Water current was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. Algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control. Consequently water balance in stagnate zone triggered a rise of water temperature in summer. It affected algal bloom in the embayment of the reservoir. The simulation result by outflow control scenarios showed that spill flow augmentation induced in water body instability of stagnate zone so that water temperature declined. It could be suggested that outflow control minimize algal bloom in the downstream in the flooding season as long as water elevation level is maintained properly.

저수지 수위 정밀 측정에 의한 댐 유입량 자료 개선 (Improvement of Inflow Estimation Data by Precise Measurement of Water Level in Reservoir)

  • 박지창;김남;류경식
    • 한국환경과학회지
    • /
    • 제18권3호
    • /
    • pp.309-314
    • /
    • 2009
  • A accurate reservoir inflow is very important as providing information for decision making about the water balance and the flood control, as well as for dam safety. The methods to calculate the inflow were divided by the directed method to measure streamflow from upstream reservoirs and the indirected method to estimate using the correlation of reservoir water level and release. Currently, the inflow of multi-purpose dam is being calculated by the indirect method and the reservoir water level to calculate the storage capacity is being used by centimeters(cm) units. Corresponding to the storage volume of 1cm according to scale and water level of multi-purpose dam comes up to from several 10 thousand tons to several million tons. If it converts to inflow during 1 hour, and it comes to several hundred $m^3/sec$(CMS). Therefore, the inflow calculated on the hourly is largely deviated along the water level changes and is occurred minus value as the case. In this research, the water level gage has been developed so that it can measure a accurate water level for the improvement for the error and derivation of inflow, even though there might be various hydrology and meteorologic considerations to analyse the water balance of reservoir. Also, it is confirmed that the error and the standard derivation of data observed by the new gage is decreased by 89,6% and 1/3 & 87% and 2/3 compared to that observed by the existing gage of Daecheong and Juam multi-purpose dam.

관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증 (Development and validation of BROOK90-K for estimating irrigation return flows)

  • 박종철;김만규
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.