• 제목/요약/키워드: Reservoir system

검색결과 954건 처리시간 0.025초

하천형 호수인 팔당호의 인 수지 (Phosphorus Budget of a River Reservoir, Paldang)

  • 공동수
    • 한국물환경학회지
    • /
    • 제34권3호
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

도시홍수방재를 위한 수문모니터링시스템의 적용 (Application of Hydrological Monitoring System for Urban Flood Disaster Prevention)

  • 서규우;나현우;김남길
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Development and application of inverse model for reservoir heterogeneity characterization using parallel genetic algorithm

  • Kwon Sun-Il;Huh Dae-Gee;Lee Won-Suk;Kim Hyun-Tae;Kim Se-Joon;Sung Won-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.719-722
    • /
    • 2003
  • This paper presents the development of reservoir characterization model equipped with parallelized genetic algorithm, and its application for a heterogeneous reservoir system with integration of the well data and multi-phase production data. A parallel processing method performed by PC-cluster was applied to the developed model in order to reduce time for an inverse calculation. By utilizing the developed model, we performed the inverse calculation with the production data obtained from three layered reservoir system to estimate porosity and permeability distribution. As a result, the pressures observed at well almost identical to those calculated by the developed model. Also, it was confirmed that parallel processing could be applied for reservoir characterization study efficiently.

  • PDF

Application of subspace identification on the recorded seismic response data of Pacoima Dam

  • Yu, I-No;Huang, Shieh-Kung;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.347-364
    • /
    • 2019
  • Two seismic response data from the CSMIP strong motion instrumentation of Pacoima dam are selected: San Fernando earthquake (Jan 13, 2001; ML=4.3) and Newhall earthquake (Sept. 1, 2011; ML=4.2), for the identification of the dam system. To consider the spatially nonuniform input ground motion along the dam abutment, the subspace identification technique with multiple-input and multiple-output is used to extract the dynamic behavior of the dam-reservoir interaction system. It is observed that the dam-reservoir interaction is significant from the identification of San Fernando earthquake data. The influence of added mass (from the reservoir) during strong ground motion will create a tuned-mass damper phenomenon on the dam body. The fundamental frequency of the dam will be tuned to two different frequencies but with the same mode shapes. As for the small earthquake event, the dam-reservoir interaction is insignificant.

저수량 배분규칙을 적용한 병렬저수지 용수공급능력 해석 (The Capability Analysis of Water Supply for the Parallel Reservoir System by Allocation Rules)

  • 박기범;지홍기;이순탁
    • 상하수도학회지
    • /
    • 제21권2호
    • /
    • pp.215-224
    • /
    • 2007
  • The purpose of this study was to estimates water supply reliability indices of the water supply by Allocation Rules(AR) for parallel reservoirs. Rule (A) can be considered it as only current storage, Rule(B) can be considered it as current storage and inflow and Rule(C) can be considered it as current storage, inflow and water supply capacity. First, conditions of water supply are divided by Condition I for the monthly constant water supply and Condition II for the monthly varied water supply. Second, results of allocation coefficients are revealed the smallest different at Rule(C). The analysis of water supply showed that the capability of water supply is superior to the Rule(B), it is superior to the Rule(C) on the base of the balance of water supply. The reliability analysis was highly showed at the Rule(B) and Rule(C). A methodology for the analysis of water supply was developed and applied to the parallel reservoir system from this research, The operation rule for the parallel reservoir can be slightly modified and successfully applied to the different kinds of the parallel reservoir system.

HEC-HMS와 HEC-RAS모형의 연계에 의한 댐 유역의 홍수영향 분석 (Flood Effects Analysis of Reservoir Basin through the Linkage of HEC-HMS and HEC-RAS Models)

  • 이원희;김선주;김필식
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.15-25
    • /
    • 2004
  • For the effective operation of irrigation reservoirs, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. In this study, the flood effective analysis system was developed through the integration of long-term water budget analysis model, GIS-based HEC-HMS model and HEC-RAS model. The system structure consists of long-term water budget model using modified TANK theory, flood runoff and flood effects analysis model using HEC-GeoHMS, HEC-HMS and HEC-RAS models. The flood effects analysis system simulated the flood runoff from the upstream, downstream flood and long-term runoff of the watershed using the observed data collected from 1998 to 2002 of Seongju dam. The simulated results were reasonably good compared with the observed data. The optimal management method of the reservoir during the whole season is suggested in this study, and the flood analysis system can be a useful tool to evaluate a reservoir operation quantitatively for the mitigation of flood damages of reservoir basin.

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

하천(河川)을 고려한 호소(湖沼)의 물 순환 정책방안 -충남·대전지역 농업용 호소의 체류시간을 중심으로- (Policy for Water Cycle of Agricultural Reservoirs Considering Downstream - Focused on HRT of Agricultural Reservoir in Chungcheongnam-do and Daejeon Metropolitan City -)

  • 이상진
    • 한국콘텐츠학회논문지
    • /
    • 제11권9호
    • /
    • pp.246-253
    • /
    • 2011
  • 농업용수를 확보하기 위하여 조성한 호소에 장기간 물을 담수함에 따라 수질오염으로 이용가치 저하와 하류 하천이 건천화 되어 하천의 기능을 상실하는 등 유역내 잘못된 물 관리체계로 여러 가지 문제점이 발생하고 있다. 충남 대전지역을 중심으로 농업용 호소의 운영현황을 조사한 결과 대부분 호소수의 체류시간은 8개월 이상을 유지하여 그 기간 동안 하류하천의 건천화가 나타났고, 호소수의 수질은 생활계 및 축산계 오염물질의 유입과 강수량에 따른 물 순환특성과 상당히 밀접한 것으로 분석되었다. 따라서 호소 유역내수질오염물질 저감과 함께 하류하천이 건천화가 되지 않도록 담수량과 담수시기를 조절하고, 호소수 체류 시간은 가급적 짧게 유지하는 등 유역내 물 순환체계를 개선할 필요가 있다.

Cometabolism degradation of lignin in sequencing batch biofilm reactors

  • Kuang, Faguo;Li, Yancheng;He, Lei;Xia, Yongqiu;Li, Shubai;Zhou, Jian
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.294-300
    • /
    • 2018
  • Cometabolism technology was employed to degrade lignin wastewater in Sequencing Batch Biofilm Reactor. Cometabolic system (with glucose and lignin in inflow) and the control group (only lignin in inflow) were established to do a comparative study. In contrast with the control group, the average removal rates of lignin increased by 14.7% and total oarganic carbon increased by 32% in the cometabolic system with glucose as growth substrate, under the condition of 5 mg/L DO, $0.2kgCOD/(m^3{\cdot}d)$ lignin and glucose $1.0kgCOD/(m^3{\cdot}d)$. Functional groups of lignin are degraded effectively in cometabolic system proved by fourier transform infrared spectroscopy and Gas Chromatography-Mass Spectrometer, and the degradation products were amides (mainly including acetamide, N-ethylacetamide and N, N-diethylacetamide), alcohols (mainly including glycerol and ethylene glycol) and acids. Meanwhile, results of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis showed great differences in microbial population richness between cometabolic system and the control group. The Margalef's richness index and Shannon-Wiener's diversity index of microorganism in cometabolic system were 3.075 and 2.61, respectively. The results showed that extra addition of glucose, with a concentration of 943 mg/L, was beneficial to lignin biodegradation in cometabolic system.