• Title/Summary/Keyword: Reservoir stratification

Search Result 72, Processing Time 0.031 seconds

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 (CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의)

  • Chung, Se-Woong;Oh, Jung-Kuk;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.655-664
    • /
    • 2005
  • A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{\circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.

Effects of Salix subfragilis communities on water quality in Namgang Dam reservoir (남강댐 선버들 군락이 수질에 미치는 영향)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1065-1076
    • /
    • 2022
  • The purpose of this study was to investigate the effect of the expansion and withering of Salix subfragilis communities on the water quality in Namgang Dam reservoir. The distribution area of the Salix subfragilis communities was 0.12 km2 in 2003 for the first time, but it was 3.58 km2 in 2019, which has increased rapidly by about 30 times in 16 years. However, in 2013, the distribution area has decreased by 0.17 km2 due to long-term immersion in high turbidity, and self-thinning in Salix subfragilis communities. The lake characteristics of reservoir showed a combination of lake type and river type in terms of average water depth, watershed area/lake surface area ratio, water residence time, flushing rate, and stratification. From the result of analyzing long-term changes in lake water quality, COD, TP, and chlorophyll-a in Salix subfragilis communities were significantly larger than those in the three points located in the central part of reservoir. In particular, the fact that the value of chlorophyll-a showed the maximum value in winter rather than summer, unlike the trend of the three points in the Namgang Dam water quality monitoring network, is thought to have occurred internally rather than externally. It can be estimated that one cause of this deterioration of the water quality in Namgang Dam reservoir is the huge amount of nutrients generated in the decomposition process of by-products such as fallen leaves, branches and withered trees in Salix subfragilis communities.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Development of Evaluation Items and Indicators for Hydrological Safety on Agricultural Reservoir (농업용저수지 수문학적 안전성 평가 항목 및 지표 개발)

  • Lee, Jae Ju;Rhee, Kyoung Hoon;Park, Jong Seok;Han, Chang Wha;Jin, Wan Gyu
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.403-411
    • /
    • 2014
  • This study Development of Evaluation Items and Indicators for Hydrological Safety on Agricultural Reservoir improvement and grasped the relative importance through stratification of the evaluation points through AHP technique exercised by group of experts. Below conclusion was acquired based on the study done. Firstly, the hierarchy of the evaluation items was divided into two layers: there were six upper evaluation items and eleven lower evaluation items. Secondly, using the analytic hierarchy process, the importance values of the six upper evaluation items were determined via the paired comparison questionnaire survey and consistency check, which were in the order of maintenance condition (condition evaluation grade), freeboard of levee body (non-overtopping), discharge capacity of spillway, potential flood damage, flood calculation factor and freeboard of downstream bank. The maintenance condition(condition evaluation grade) was significantly influenced the results of the hydrological safety on agricultural reservoir evaluation results. Finally, the study indicated that in the short term, improving the safety check condition evaluation grade will be useful to improve the hydrological safety of the agricultural reservoir because it can be performed immediately.

Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2] (아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용)

  • Kim, Yoon-Hee;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.205-212
    • /
    • 2004
  • Phosphorus cycle was studied in a deep stratified reservoir in summer monsoon area (Lake Soyang, Korea) by surveying phosphorus input from the watershed and the movement of phosphorus within the reservoir. And the spatial and temporal distribution of phosphorus was modeled with a 2-dimensional water quality model (CE-QUAL-W2), Phosphorus loading was calculated by measuring TP in the main inflowing river (the Soyang River) accounting for 90% of watershed discharge. TP of the Soyang River showed a large daily variation with the flow rate. High phosphorus loading occurred during a few episodic storm runoff laden with suspended sediments and phosphorus. Because storm runoff water on rainy days have lower temperature, it plunges into a depth of same temperature (usually below 20m depth), forming an intermediate turbidity layer with a thickness of 20 ${\sim}$ 30 m. Because of stable thermal stratification in summer the intermediate layer water of high phosphorus content was discharged from the dam through a mid-depth outlet without diffusing into epilimnion. The movement of runoff water within the reservoir, and the subsequent distribution of phosphorus were well simulated by the water quality model showing a good accuracy. The major parameter for the calibration of phosphorus cycle was a settling velocity of detritus, which was calibrated to be 0.75 m ${\cdot}$ $day^{-1}$. It is concluded that the model can be a good simulator of limnological phenomena in reservoirs of summer monsoon area.

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

Changes of Seasonal and Vertical Water Quality in Soyang and Paldang River-reservoir System, Korea (소양호와 팔당호 수질의 수직 및 계절적 변화)

  • Kim, Jong-Min;Park, Jun-Dae;Noh, Hye-Ran;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.10-20
    • /
    • 2002
  • Changes of seasonal and vertical water quality was analyzed with physico-chemical data from Soyang and Paldang river-reservoir system in Korea during the 1996 to 1998. In Soyang river-reservoir system, the water column was well stratified, which narrow epilimnion layer of 5 to 10 m depth in spring to summer enlarged gradually about 40 m depth in fall as going to times. In contrast, metalimnion layer tended to be narrow during the same period. Water temperature of hypolimnion was maintained about $5^{\circ}C$ continuously throughout the year. DO of the epilimnion layer was supersaturated from spring to summer, however, it was decreased to 75% at the epilimnion layer and $45{\sim}50%$ at the hypolimnion layer at the late fall. The lowest conductivity of below $50\;{\mu}S/cm$ was observed at the metalimnion layer during thesummer to fall. In Paldang river-reservoir system, the water column wag well mixed layer throughout the year, although water temperature was changed seasonally from $5^{\circ}C$ in February to $28^{\circ}C$ in July. Water temperature between upper and lower layer was different about $5^{\circ}C$ from late spring (May) to early fall (September). DO was over and less saturated in upper and lower layer during the early summer to early fall, respectively. Conductivity was decreased to $90\;{\mu}S/cm$ in lower layer of below $4{\sim}5\;m$ depth during the late spring to early fall and that of upper layer of above 10 m depth decreased to about $100\;{\mu}S/cm$ during the late fall (November) and early spring (March). Retention time of Soyang river-reservoir system was much longer than that of Paldang river-reservoir system. Chlorophyll a, T-N and T-P concentration in Paldang river-reservoir system were higher than that of Soyang river-reservoir system by a factor of 2.7, 1.2 and 2.6, respectively. Algal blooming was deeply affected by the nutrients than the retention time.

The Variation of Water Temperature and Turbidity of Stream Flows entering Imha Reservoir (임하호 유입지천의 수온과 탁도 변화)

  • Kim, Woo-Gu;Jung, Kwan-Soo;Yi, Yong-Kon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.13-20
    • /
    • 2006
  • The changing patterns of water temperature and turbidity in streams entering Imha Reservoir were studied. The turbidity variation near the intake tower in Imha Reservoir was investigated in relation with the variation of water temperature and turbidity in streams. Water temperature was estimated using multi-regression method with air temperature and dew point as independent variables. Peak turbidity was also estimated using non-linear regression method with rainfall intensity as an independent variable. Although more independent variables representing watershed characteristics seem to be needed to increase estimation accuracies, the methodology used in this study can be applied to estimate water temperature and peak turbidity in other streams.

Dynamic Changes of Dissolved Oxygen during Summer Monsoon (하절기 장마동안 용존산소의 역동적 변화)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.213-221
    • /
    • 2000
  • Seasonal oxygen content and deficit rates were evaluated from 17 sites of Taechung Reservoir during 1993${\sim}$1994. In 1993, river inflows peaked during the monsoon in July${\sim}$August and disrupted thermal stratification and anoxic layers in the headwaters, thereby confining the anoxia to the mid-lake and downlake reach. The volume of anoxic water with < 4 mg/l DO comprised only < 10% of the total lake volume in this period. In contrast, during monsoon 1994, 85% of total lake volume was subject to hypoxic conditions with oxygen concentrations < 30% saturation, resulting in massive fishkills (Hypomesus olidus). Relative areal oxygen deficit (RAOD) was -0.024mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1993, whereas it rapidly decreased at the rate of 0.080mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1994. Anoxic factor (AF) showed a same interannual pattern as the RAOD and was greater >50 d in 1994 (76.5 d) than 1993 (21.3 d). Thus, the reservoir showed a river-characteristics (6${\sim}$11 mg/l DO) in 1993 while lacustrine conditions (<4mg/l DO) dominated in 1994. Regression analysis showed that the variation of summer DO was mostly determined (R$^{2}$=0.99, p<0.0001) by inflow. These findings suggest that the primary factor regulating the oxygen content in this system during summer is an intensity of the monsoon rain.

  • PDF