• Title/Summary/Keyword: Reservoir sediment

Search Result 256, Processing Time 0.033 seconds

Impact of the Geochemical Characteristics and Potential Contaminants Source of Surrounding Soil on Contamination of a Reservoir in an Island (I) - Evaluation of Potential Liquation by Sediment - (주변토양의 지구화학적 특성과 잠재적 오염원이 도서지역 저수지의 오염부하에 미치는 영향(I) - 퇴적토에 의한 잠재적 용출특성 평가 -)

  • Park, Sun-Hwan;Park, Wan-Sub;Kim, Chang-Gyun;Park, Joong-Gyu;Kim, Wan-Hee;Chang, Yoon-Young;Jeong, Jeong-Ho;Lee, Sun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.107-116
    • /
    • 2010
  • In this research potential liquation of contaminants from surrounding soil to a reservoir in an island was studied to investigate the cause and route of contamination of Baengyeong-myeon reservoir. Soil of Baengyeong-myeon reservoir consists of $SiO_2$ and has a high iron content because of geological characteristics of its country rock. From the field investigation and simulation study it was found that highly accumulated carbon content in the reservoir sediment was incurred from ground water, which provides a good habitat for microbes. And the liquation, the cause of organics growth, occurs mainly on the bottom of the reservoir consisting marine clay layer once used as farmland. So dredging of the sediment of reservoir and replacing with valley soil is suggested to prevent continuous contamination of a reservoir in an island due to COD production.

Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model (CCHE1D 모형을 이용한 저수지 붕괴에 따른 하상변동 해석)

  • Son, In Ho;Kim, Byunghyun;Son, Ah Long;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • This study presents the analysis of flood and bed deformation caused by reservoir failure. The CCHE1D is used to simulate 1D non-uniform, non-equilibrium sediment transport and bed deformation. The CCHE1D deals with the adaptation length for non-equilibrium sediment, classified sediment particle for non-uniform sediment and mixing layer for the exchange with the sediment moving with the flow. The model is applied to Ha!Ha! river basin where was experienced reservoir failure in 1996 to analyze non-uniform and non-equilibrium sediment transport. The calculations are compared with morphological bed changes of pre- and post-flood. In addition, model sensitivity to main parameters involving adaptation length ($L_{s,b}$), non-equilibrium coefficient (${\alpha}_s$), mixing layer thickness (${\delta}_m$) and porosity (p') is analyzed. The results indicates that thalweg change is the most sensitive to non-equilibrium coefficient (${\alpha}_s$) among those parameters in the study area.

Analysis of Sediment Contamination Levels in the Giheung Reservoir (기흥저수지 퇴적물에 대한 오염도 분석)

  • Oh, Kyoung-Hee;Kim, Sung-Jin;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • In order to analyze the effects of sediment on the occurrence of algal bloom on the Giheung Reservoir, the contamination levels of sediments were evaluated. The concentrations of various organic compounds (ignition loss), as well as the total nitrogen, total phosphorus, and heavy metals (Zn, Cr, Co, Ni, Pb, As, Hg, Cd) were analyzed in the sediments taken at eighteen sites of the reservoir. The concentrations of ignition loss and total nitrogen tended to increase from upstream to downstream, and ranged from 4.38 to 12.93% and 2,153 to 4,723 mg/kg, respectively. Heavy metals were in the order of Zn>Cr>Co>Ni>Pb>As>Hg, and the contamination level of the heavy metals was not high as a whole. The concentrations of the total phosphorus were in the range of 765 ~ 3,238 mg/kg, which exceeded the contamination level of the "Sediment Quality Assessment Guideline of River and Lake Sediment (Rule No. 2015-687 of the National Institute of Environmental Research, Korea)" at two upstream sites, four downstream sites, and all downstream sites. These results indicated that the pollution level of the total phosphorus, which is the main factor related to algal bloom, was found to be serious. Therefore, it is necessary to establish a countermeasure for sediment management in order to control the algal bloom which occurs periodically in the reservoir.

An Optimal Control Theory on Economic Benefits of Dam Management: A Case of Aswan High Dam in Egypt (최적제어 이론을 이용한 댐 토사관리방안 : 이집트 아스완 댐 사례)

  • Lee, Yoon;Kim, Dong-Yeub
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.41-55
    • /
    • 2010
  • This paper analyzes optimal watershed management focusing on reservoir-level sediment removal techniques. Although dams and reservoirs provide several benefits, sedimentation may reduce their storage capacity. As of today, the Aswan High Dam (AHD) in Egypt faces approximately 76% reduced life of the reservoir. Since the AHD is the major fresh water source in Egypt, sustainable use of this resource is extremely important. A model is developed to simultaneously determine optimal sediment removal strategies for upstream soil conservation efforts and reservoir-level sediment control. Two sediment removal techniques are considered: mechanical dredging and hydro-suction sediment removal system (HSRS). Moreover, different levels of upstream soil conservation efforts have introduced to control soil erosion, which is a major contributor of reservoir storage capacity reduction. We compare a baseline case, which implies no management alternative, to non-cooperative and social planners' solution. Our empirical results indicate that the socially optimal sediment removal technique is a mechanical dredging with unconstrained amount with providing a sustainable life of the reservoir. From the empirical results, we find that social welfare can be as high as $151.01 billion, and is sensitive to interest rates and agricultural soil loss.

  • PDF

Simulation of Reservoir Sediment Deposition in Low-head Dams using Artificial Neural Networks

  • Idrees, Muhammad Bilal;Sattar, Muhammad Nouman;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.159-159
    • /
    • 2019
  • In this study, the simulation of sediment deposition at Sangju weir reservoir, South Korea, was carried out using artificial neural networks. The ANNs have typically been used in water resources engineering problems for their robustness and high degree of accuracy. Three basic variables namely turbid water inflow, outflow, and water stage have been used as input variables. It was found that ANNs were able to establish valid relationship between input variables and target variable of sedimentation. The R value was 0.9806, 0.9091, and 0.8758 for training, validation, and testing phase respectively. Comparative analysis was also performed to find optimum structure of ANN for sediment deposition prediction. 3-14-1 network architecture using BR algorithm outperformed all other combinations. It was concluded that ANN possess mapping capabilities for complex, non-linear phenomenon of reservoir sedimentation.

  • PDF

Comparative Study on the Distribution of Sediment Deposits Along the Soyang-gang Dam by Measurement Data (소양강댐의 퇴사용량산정에 관한 연구)

  • Seo, Kwang-Suk;Lee, Joo-Heon;Lee, Eun-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.3 s.6
    • /
    • pp.109-117
    • /
    • 2002
  • An analysis to allocate storage space for sediment accumulation during the economic life of the reservoir is required in the planning or design of a reservoir. This analysis has been the most difficult and tedious aspect to deal with reservoir sedimentation because of the interaction between the various parameters related to the hydraulics of flow, reservoir operating policy, inflowing sediment load. The approach to analyzing spatial distribution of deposits has relied on empirical methods, all of which required a great deal of simplification from the actual physical phenomena. For the purpose of this study, reservoir sedimentation rate computed by Empirical Area Reduction Method is compared with measuring rate along the Soyang-gang Dam. As a conclusion, reservoir sedimentation rate can be estimated exactly by Empirical Area Reduction Method.

저수지 퇴적물 재활용을 위한 처리장치에 관한 연구

  • 박진홍;조영민;오종민
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.338-341
    • /
    • 2002
  • This work is the basis research to apply Hydrocyclone for the separation and the thickening to the reservoir sediment. Chemical analysis result showed that organic contaminants were abundantly found in smaller sediment particles. As a result of the experiment device that higher reduced efficiency was obtained under the high velocity and low concentration with the small cyclones.

  • PDF

The Evaluation on Solidification of Dredged Sediment for Recycle from Stagnant Water Area (정체성 수역 퇴적물 재활용을 위한 고형화 평가)

  • Kim, Sang Hyun;Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Sediment has been increasingly acknowledged as a carrier in water system and an available contamination. For this reason, dredging of sediment in reservoir to remediate water quality and secure storage capacity is conducted annually. However, disposal of numerous dredged sediment is necessary as a secondary problem. Currently, in Korea, dredged sediment is classified as waste to be reclamated or recycled into sandy soil, however, they are still in trouble because of spacial and environmental problem. Therefore, rather than simple disposal or reuse into sandy soil, it is necessary to research on method to manage main cause of pollution and increase the value as a resource. In this study, we intend to develop a recycle technology for numerous dredged sediment produced by dredging in deteriorated reservoirs using solidificator (stabilizer). To achieve this, we will consider utilization of dredged sediment and evaluation of use possibility as natural recycle by analysis the characteristics of soil-solidificator mixture in terms of physicochemical properties and the mixing ratio between sediment and solidificator.

Properties of artificial lightweight aggregates made from waste sludge

  • Chiou, I.J.;Chen, C.H.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.617-629
    • /
    • 2011
  • In this investigation, reservoir sediment and municipal sewage sludge were sintered to form the artificial lightweight aggregates. The sintered aggregates were compared with the commercialized lightweight aggregates to in terms of potential alkali-silica reactivity and chemical stability based on analyses of their physical and chemical properties, leaching of heavy metal, alkali-silica reactivity, crystal phase species and microstructure. Experimental results demonstrated that the degree of sintering of an aggregate affected the chemical resistance more strongly than did its chemical composition. According to ASTM C289-94, all potential alkali-silica reactivity of artificial lightweight aggregates were in the harmless zone, while the potential reactivity of artificial lightweight aggregates made from reservoir sediment and municipal sewage sludge were much lower than those of traditional lightweight aggregates.

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF