• Title/Summary/Keyword: Reservoir operation rule

Search Result 70, Processing Time 0.023 seconds

Operation Rule Curve for Reservoir with Low Areal Ratio of Watershed to Downstream Paddy Field (유역배율이 작은 저수지의 이수관리방법)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.68-80
    • /
    • 2011
  • To provide a operation rule curve for reservoir with low ratio of watershed area to paddy field area, Duckyong reservoir with watershed area of $15.8km^2$ and paddy field area of 1,071ha was selected, in which 4 meters are being heightened and full water levels will be increased from EL.26.0m to EL.30.0m, total water storages from 365.6M $m^3$ to 708.0M $m^3$. There was no operation rule curve that satisfied over 90% reliability of water supply in reservoir with watershed area of 1.48 times of paddy field area. The differences between observed and simulated reservoir daily water storages were minimized to determine parameters for simulating reservoir inflow in case of paddy field area of 550ha from 1991 to 2010. A operation rule curve was drawn to have a maximum storage with total water storage, which was in paddy field area of 700ha with ratio of 2.3 between watershed area and paddy field area. This case showed that annual irrigation water supply was 668M $m^3$ and instream flow of 57M $m^3$, water supply reliability of 55.6% in normal operation, and annual irrigation water supply was 605M $m^3$ and instream flow of 38M $m^3$, water supply reliability of 95.6% in withdrawal limited operation. Water supply reliabilities showed 35.6% without flood regulation and 17.8% with flood regulation in existing reservoir before heightening.

  • PDF

Operation rule curve for supplying urban instream flow from reservoir (도시 하천유지유량 공급의 저수지 운영 방법)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.163-172
    • /
    • 2011
  • To provide the operation rule curve for suppling instream flow to urban stream from reservoir, the Soho reservoir with watershed area of 7.4 $km^2$ and total water storage of 2.58 $Mm^3$ was planned at the headwaters of the Daejeoncheon. Daily streamflow was simulated and using the simulated streamflow and desired instream flow, the operation rule curve by Senga method was drawn and evaluated through reservoir operation. Senga method is derived by accumulating the differences between streamflow and desired instream flow adversely. Water storages were simulated on a daily basis to supply urban instream flow from Soho reservoir, but the amount of supplying instream flow to urban stream was not nearly increased comparing with that of normal operation that does not used the rule curve. Thereafter the new simulation-based operation rule curve was derived and applied to supply instream flow from Soho reservoir. In normal operation, the amount of instream flow was shown to 15,000 $m^3$/d, but it was increased to 27,700 $m^3$/d in withdrawal limited operation using the new derived rule curve, in which the applicability of this rule curve was proved. Also comparing with the flow duration curves at station just before urban Daejeoncheon stream without and with upstream Soho reservoir, the 95th flow was decreased from 1.64 mm/d to 1.51 mm/d, and the 355th flow was increased from 0.17 mm/d to 0.30 mm/d. Monthly streamflows during October to March were increased from 10.6~24.1 mm to 24.1~34.0 mm with the increasing rate of 141~227%.

Analysis of Operation Plan by Multipurpose Supply for Heightened Agricultural Reservoir (둑높임저수지 다중용수공급에 따른 운영 방안 분석)

  • Kim, Hae Do;Lee, Kwang Ya;Park, Jong Yoon;Han, Guk Heon;Lim, Heung Chang
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2012
  • The aim of this study was to analyze the operation plan for heightened agricultural reservoir, in terms of water supply to downstream paddy fields and instreams. Operation of agricultural reservoir before the heightened reservoir project is easy to manage because of its single purpose, which is irrigation water supply. However, after proceeding the heightened project, there is needed to be set the operation rule because of its multiple purpose, which is water for irrigation and supply to the stream. In this paper, propose the method of design the criteria of supply to the stream and operation rule curve for the heightened reservoir. According to simulation results by proposed operating rule for the Gumsa reservoir, the yearly amount of water supply to the stream can be 2,588 thousand $m^3$, 3 times of the heightened space (2,588 thousand $m^3$).

  • PDF

Evaluation of the State of Drought by the Operation Rule Curve in the Irrigation Reservoir (관개저수지의 기준저수량 곡선에 의한 한발 평가)

  • 이재면;김영식;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.117-122
    • /
    • 1999
  • The state of drought was evaluated by the operation rule curve. From the present percentage of reservoir storage and the operation rule curve, it could be determined to ristrict the irrigation water supply to a certain level and eventually to overcome the shortage of water in the irrigation reservoir.

  • PDF

A Rotational Irrigation Scheduling for an Irrigated Paddy Blocks with Operation Rule Curve (이수관리곡선에 의한 논 관개지구의 윤환관개모형)

  • 김태철;이재면;이덕주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.67-76
    • /
    • 2003
  • The principal operation rule of irrigation reservoir is to accelerate the water use and supply water actively when water is sufficient, and to restrict water use and supply water deficiently in order not to stop the irrigation activity when water is scarce. In drought seasons. water should be saved in order to keep the reservoir not to be dried up during the irrigation season. It is important to know how much water should be saved, depending on the rice-growing season and water storage volume. For the drought control of irrigation reservoirs. the rotational irrigation scheduling in paddy with the operation rule curve developed in this study could be utilized as a software program to install TM/TC system for irrigation water supply by automation facilities.

Reservoir Operation by Drought Forecasting and Warning (가뭄 예ㆍ경보에 의한 저수지 운영에 관한 연구)

  • Yi, Jae-Eung;Kim, Young-A
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.837-844
    • /
    • 2004
  • In this study, the efficient reservoir operation is studied by comparing results from reservoir operation using a basin drought forecasting and warning system with an existing reservoir operation rule. As a result, it is found that the reliability and average annual storage of reservoir operation using a basin drought forecasting and warning system and release coefficients is better than those of reservoir operation using the existing operation rule. The release coefficients for Yongdam dam located in the Geum river basin selected as a case study are found to be the most effective for the value of 0.95 for the drought watch, 0.9 for the drought warning and 0.85 for the drought emergency. The reservoir operation using a drought forecasting and warning enables the use of the limited water resources effectively during drought and will contribute the national water resources management.

Affecting Water Supply Capacity Followed by Allocating Flood Control Volume in Heightening Reservoir (홍수조절용량 설정에 따른 증고저수지의 용수공급능력 변화)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.57-70
    • /
    • 2010
  • This study was performed to analyze the affect of water supply capacity followed by allocating flood control volume in heightening reservoir, of which Baekgog reservoir was selected as a case study in here. Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water level will be heightened from EL. 100. 1m to EL. 102.1m, and total storage from 21.75M $m^3$ to 26.67M $m^3$. Flood inflow with 200year frequency was estimated to 997 $m^3$/s in peak flow and 22.54M $m^3$ in total volume. Reservoir flood routing was conducted to determine flood limited water levels, which was determined to have scenarios such as EL 97-98-99m in periods of 6.21.-7.20., 7.21.-8.20., and 8.21.-9.20., respectively, EL 97-97-97m, EL 98-98-98m in present reservoir, and EL 99-100-101m, EL 99-99-99m, and EL 100-100-100m in heightened reservoir. Reservoir inflow was simulated by DAWAST model. Annual paddy irrigation requirement was estimated to 33.19M $m^3$ to 2,975ha. Instream flow was allocated to 0.14mm/d from October to April. Operation rule curve was drawn using inflow, irrigation and instream flow requirements data. In case of withdrawal limit reservoir operation using operation rule curve, reduction rates of annual irrigation supply before and after flood control by reservoir were 2.0~4.3% in present size and 1.5~3.6% in heightened size. Reliability on water supply was decreased from 77.3% to 63.6~68.2% in present size and from 81.6% to 72.7~79.5% in heightened size. And reduction rates of water storage at the end of year before and after flood control by reservoir were 7.3~16.5% in present size and 7.7~16.9% in heightened size. But water supplies were done without any water deficiency through withdrawal limit reservoir operation in spite of low flood regulating water level.

  • PDF

Rural Water Supply from the Irrigation Reservoir

  • 김대철;박성기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.47-54
    • /
    • 1995
  • Irrigation water has been mainly used for paddy rice. Irrigated paddy land tends to be recently converted to land for green house, farm house, and rural-industrial complex. Consequently, demand of water for crops, domestic & industrial, rural recreations, small-scaled hydropower, livestocks, and environment in the rural area, so called rural water, is rapidly increasing. In order to supply rural water, water in the existing irrigation reservoir could be enlarged by repairment of irrigation canal and reinforcement of irrigation reservoir, and be saved by the operation rule curve, utilization of dead water, and balanced storage management.

  • PDF

Development of Han River Multi-Reservoir Operation Rules by Linear Tracking (선형추적에 의한 한강수계 복합 저수지 계통의 이수 조작기준 작성)

  • Yu, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.733-744
    • /
    • 2000
  • Due to the randomness of reservoir inflow and supply demand it is not easy to establish an optimal reservoir operation rule. However, the operation rule can be derived by the implicit stochastic optimization approach using synthetic inflow data with some demand satisfied. In this study the optimal reservoir operation which was reasonably formulated as Linear Tracking model for maximizing the hydro-energy of seven reservoirs system in the Han river was performed by use of the optimal control theory. Here the operation model made to satisfy the 2001st year demand in the capital area inputted the synthetic inflow data generated by multi-site Markov model. Based on the regressions and statistic analyses of the optimal operation results, monthly reservoir operation rules were developed with the seasonal probabilities of the reservoir stages. The comparatively larger dams which would have more controllability such as Hwacheon, Soyanggang, and Chungju had better regressions between the storages and outflows. The effectiveness of the rules was verified by the simulation during actually operating period.period.

  • PDF

Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline (현장조사 관개 기준에 따른 농업용 저수지 운영 분석)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pu Reun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.