• Title/Summary/Keyword: Reservoir Drought Index

Search Result 50, Processing Time 0.021 seconds

Agricultural Drought Risk Assessment using Reservoir Drought Index (저수지 가뭄지수를 활용한 농업가뭄 위험도 평가)

  • Nam, Won Ho;Choi, Jin Yong;Jang, Min Won;Hong, Eun Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • Drought risk assessment is usually performed qualitatively and quantitatively depending on the definition a drought. The meteorological drought indices have a limit of not being able to consider the hydrological components such as evapotranspiration, soil moisture and runoff, because it does not consider the water demand in paddies and water supply in reservoirs. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The objectives of this study were to suggest improved agricultural drought risk assessment in order to evaluate of regional drought vulnerability and severity studied by using Reservoir Drought Index (RDI). The RDI is designed to simulate daily water balance between available water from agricultural reservoir and water requirement in paddies and is calculated with a frequency analysis of monthly water deficit based on water demand and water supply condition. The results indicated that RDI can be used to assess regional drought risk in agricultural perspective by comparing with the historical records of drought in 2012. It can be concluded that the RDI obtained good performance to reflect the historical drought events for both spatially and temporally. In addition, RDI is expected to contribute to determine the exact situation on the current drought condition for evaluating regional drought risk and to assist the effective drought-related decision making.

Availability Assessment of Meteorological Drought Index for Agricultural Drought Estimation in Ungauged Area of Agricultural Drought Parameter (농업가뭄인자 미계측 지역의 농업가뭄 추정을 위한 기상학적 가뭄지수의 활용성 평가)

  • Park, Min Woo;Kim, Sun Joo;Kwon, Hyung Joong;Kim, Phil Shik;Kang, Seung Mook;Lee, Jae Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.127-136
    • /
    • 2017
  • The object of this study was to assess availability of meteorological drought index for agricultural dorught estimation in ungauged area of agricultural drought parameters which are reservoir water level and soil moisture. The IADI (Integrated Agricultural Drought Index) and the SPI (Standard Precipitation Index), which are the criteria for determining agricultural drought and meteorological drought, were calculated and compared. For this purpose, the droughts that occurred in the Baeksan reservoir in Gimje and the Edong reservoir in Suwon were evaluated by using the IADI and SPI drought indecies. In addition, we compared and analyzed the depth of drought based on the two drought indices. Evaluations derived form the IADI and SPI showed that the standard precipitation index tended to indicate the occurrence of drought earlier than the integrated agricultural drought index. However, the integrated agricultural drought index was better than the standard precipitation index at evaluating the severity of drought during the period of irrigation. The relationship between these two drought indices seems to be useful for decision making in the case of drought, and it is considered that more studies are needed to examine the applicability of these drought indexes.

Hydrometeorological Characteristics and The Spatial Distribution of Agricultural Droughts (농업가뭄의 수문기상학적 특성 및 공간적 분포에 관한 연구)

  • Jang, Jung seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.105-115
    • /
    • 2019
  • For 159 administrative areas, SPI(Standardized Precipitation Index), ARDI(Agricultural Reservoir Drought Index) and ARDIs(Agricultural Reservoir Drought Index Simulated) were developed and applied to analyze the characteristics of agricultural drought index and agricultural droughts. In order to identify hydrometeorological characteristics of agricultural droughts, SPI, ARDI and ARDIs were calculated nationwide, and the applicability was compared and examined. SPI and ARDI showed significant differences in time and depth of drought in both spatial and temporal. ARDI and ARDIs showed similar tendency of change, and ARDIs were considered to be more representative of agricultural drought characteristics. The results of this study suggest that agricultural drought is a problem to be solved in the medium and long term rather than short term due to various forms of development, complexity of development, and difficulty in forecasting. Therefore, it is concluded that a preliminary and systematic approach is needed in consideration of meteorological, hydrological and hydrometeorological characteristics rather than a fragmentary approach, and that an agricultural drought index is needed to quantitatively evaluate agricultural drought.

Development of Water Supply Capacity Index to Monitor Droughts in a Reservoir (저수지 가뭄감시를 위한 물공급능력지수의 개발)

  • Lee, Dong-Ryul;Moon, Jang-Won;Lee, Dae-Hee;Ahn, Jae-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.199-214
    • /
    • 2006
  • The efficient management strategies of reservoirs in periods of drought event are an essential element for drought planning. A Water Supply Capacity Index (WSCI) has been developed for the evaluation and effective monitoring of the supply capacity of a reservoir during a drought event. The WSCI is a measure of the duration that a reservoir can supply a required demand under the worst drought condition. The WSCI is not only a useful standard to refer to when making decisions on reservoir operations in a period of drought, but it can be also applied for setting the drought trigger in water demand sites supplied from the reservoir. The correlation between the standardized WSCI and existing drought indices such as PDSI, SPI and SWSI has been analyzed to the applicability of WSCI.

농업가뭄의 평가를 위한 가뭄지수의 적용성 분석

  • Park, Gi-Uk;Kim, Jin-Taek;Ju, Uk-Jong;Lee, Yong-Jik
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.72-81
    • /
    • 2006
  • The objictive of this study is to analyze regional drought using agricultural drought indicator. Toforecast and evaluate the drought, the drought indices for agriculture were applied. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. There are many drought index to analyze and evaluate the drought. However, these indices do not exactly explain all drought events. Thus, we select 4 drought indices to evaluate agricultural drought:reservoir storage index, 3-month delayed SPI, mean rainfall index, and dry day index. Using these ineices, six drought stages are classified. The results show that agricultural drought could be apprppriately analyzed and evaluated by agricultural drought stage and four drought indices.

  • PDF

Drought Index Calculation for Irrigation Reservoirs (관개용 저수지의 한발지수산정)

  • 김선주;이광야;신동원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.6
    • /
    • pp.103-111
    • /
    • 1995
  • Drought index calculation based on the principal hydrological parameters, such as rainfall and reservoir storage, can estimate the duration and intensity of drought in irrigation reservoirs. It is difficult to build up a drought criteria since the conditions change variously by the reliability of rainfall. Because of the increasing water demands, it is urgent to prepare a generalized positive countermeasure to overcome drought. Water demands can at calculated but the estimation of drought characteristics, and the effective water management method can be established. The purpose of this study is to obtain a drought index and build up a data-base on the reservoir basins for establishing the fundamental hydrological data-base. This Index can observe the behavior of the WSI(Water Supply Index) and the component indices. The results summarized through this study are as follows. 1. WSI value of zero does not correspond to 100% in average due to the skewness in the probability distributions. 2. WSI is not a linear index; that is, given change in terms of water volume or percentage of average does not result in a proportional change on the WSI scale. 3. WSI is not always between the reservoir and the rainfall index in magnitude. This is only true if the component indices are of opposite sign. If they are of the same sign, the SWSI will often have a mangitude greater than either of the component indices. This is easily understood, because the concurrence of extreme values of the same sign for the two components is rarer than the occurrence of extreme values for either of the two components individually.

  • PDF

A Study on the Index of Drought and Drought Management Considering Reservoir Storage (저수용량을 고려한 가뭄지수 산정과 가뭄관리에 관한 연구)

  • Cho, Hong Je;Park, Han Ki;Kim, Su Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.97-105
    • /
    • 1998
  • The goal of the present research was to develop a mean to determine indices of drought warning and emergency necessary to manage drought and establish water supply contingency plan for the municipal and industrial water supply system in urban areas. To do this, we worked on the Sayun catchment which is the main water source of Ulsan and used measured hydrologic data (storage, inflow, supply, outflow) from 1980 to 1996. The indices of drought calculated by the method of Phillips drought index based only on monthly precipitation do not pertinently represent drought phenomena in case water supply is from dam or reservoir in an urban area. Therefor, we developed the drought index technique including inflow, storage, outflow and supply which are the chief factors of drought management. The result showed that the method of Phillips drought index considering the capacity of water supply was excellent when applied to practical drought phenomena.

  • PDF

Evaluation of the Relationship between Meteorological Drought and Agricultural Drought of Geum River Basin During 2014~2016 (금강유역 2014~2016년 기상학적 가뭄과 농업가뭄간의 상관성 평가)

  • Lee, Ji Wan;Kim, Kyoung-Ho;Kim, Sehoon;Woo, Soyoung;Kim, Seong Joon
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.80-89
    • /
    • 2019
  • The purpose of this study is to analyze the relationship between SPI (Standardized Precipitation Index) meteorological drought and RDI (Reservoir Drought Index) agricultural drought for Geum river basin. Drought Indices was calculated by collecting data of precipitation and agricultural reservoir water storage rate from 2014 to 2016. To evaluated the correlation between meteorological and agricultural drought, the Pearson correlation and the Receiver Operation Characteristic (ROC) analysis were conducted to evaluate the correlation between meteorological and agricultural droughts. The SPI-6 and RDI showed the highest relationship with Pearson coefficient 0.606 and ROC hit rates 0.722 respectively, and the spatial occurrence patterns of drought using overlapped SPI-6 and RDI, the big differences between the 2 indices were occurred in the upstream areas of Miho stream and Nonsan stream from August to October 2015. The analysis using reservoirs specifications for areas where reservoir droughts occurred was conducted, and the areas showing severe drought of RDI were the reservoir areas having relatively small value of basin magnifying power (BMP). This means that a reservoir has the reaction capability for agricultural drought mainly depending on the reservoir BMP.

Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy (단일저수지 농업가뭄평가모형의 개발)

  • Chung, Ha-Woo;Choi, Jin-Yong;Park, Ki-Wook;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • This study aimed to develop an agricultural drought assessment methodology for irrigated paddy field districts from a single reservoir. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The suggested model, SRADEMP (a Single Reservoir Agricultural Drought Evaluation Model for Paddy), was composed of 4 submodels: PWBM (Paddy Water Balance Model), RWBM (Reservoir Water Balance Model), FA (Frequency and probability Analysis model), and DCI (Drought Classification and Indexing model). Two indices, PDF (Paddy Drought Frequency) and PDI (Paddy Drought Index) were also introduced to classify agricultural drought severity Both values were divided into 4 steps, i.e. normal, moderate drought, severe drought, and extreme drought. Each step of PDI was ranged from +4.2 to -1.39, from -1.39 to -3.33, from -3.33 to -4.0 and less than -4.0, respectively. SRADEMP was applied to Jangheung reservoir irrigation district, and the results showed good relationships between simulated results and the observed data including historical drought records showing that SRADEMP explains better the drought conditions in irrigated paddy districts than PDSI.

Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline (현장조사 관개 기준에 따른 농업용 저수지 운영 분석)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pu Reun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.