• Title/Summary/Keyword: Research performance-based class

Search Result 337, Processing Time 0.024 seconds

The Design and application of Fuzzy control System using T-operators (T-operators를 이용한 Fuzzy Control System의 설계 및 응용)

  • Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 1996
  • In this paper, The Fuzzy Logic Controller based on T-operators is designed. Some typical T-operators and their mathematical properties are studied. A generalized fuzzy inference model is proposed by introducing the general notion of T-operators into the conventional one which is based only on the Min and Max operators. Fuzzy Logic Control algorithms based on the T-operators are suggested. Then, by computer simulations, the effect of various T-operators on the performance of the fuzzy logic controller are studied. The purpose of these simulation studies were to observe the flexibility and system responses using the processed class of T-operators in the fuzzy inference mechanisms. This observation was made on parameters such as speed of reponses, steady-state behavior and non oscillatory responses.

  • PDF

A Prediction Study for Fuel Economy Development in an Express Bus (고속버스 연비개선 예측에 관한 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.181-185
    • /
    • 2006
  • A study to get better vehicle fuel economy is described based on an express bus. The approach is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

Constitution and Operation of a Molten Carbonate Fuel Cell System (용융탄산염형 연료전지 발전시스템 구성 및 운전)

  • Ahn, Kyo-Sang;Kim, Dong-Hyung;Seol, Jin-Ho;Lim, Hee-Chun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.100-103
    • /
    • 1997
  • Korea Electric Power Corporation (KEPCO) started a fuel cell project to develop alternative sources of electric power because of the rapid increase in power demand and global environmental problems. For the development of a molten carbonate fuel cell (MCFC), KEPCO started the project in 1993 to develop a 2 kW MCFC system and finished it at the end of 1996. In this project, $ASPEN^+$ was utilized to design the 2 kW MCFC generation system. Based on this simulation, a power generation system was designed and installed for operation and a long term test of internally manifolded 2 kW class MCFC stack. This stack has 20 cells with an effective electrode area of $1000\;cm^2$. It was run at 0.84 V and $150\;mA/cm^2$ and was operated for more than 3,250 hours continuously. This paper describes the system configuration and its control and measurement units. An analysis of the stack performance, the effect of gas utilization ratio, and the stack performance requirements are also discussed.

  • PDF

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.

Reliability analysis of an embedded system with multiple vacations and standby

  • Sharma, Richa;Kaushik, Manju;Kumar, Gireesh
    • International Journal of Reliability and Applications
    • /
    • v.16 no.1
    • /
    • pp.35-53
    • /
    • 2015
  • This investigation deals with reliability and sensitivity analysis of a repairable embedded system with standby wherein repairman takes multiple vacations. The hardware system consists of 'M' operating and 'S' standby components. The repairman can leave for multiple vacations of random length during its idle time. Whenever any operating unit fails, it is immediately replaced by a standby unit if available. Moreover, governing equations of an embedded system are constructed using appropriate birth-death rates. The vacation and repair time of repairman are exponentially distributed. The matrix method is used to find the steady-state probabilities of the number of failed components in the embedded system as well as other performance measures. Reliability indexes are presented. Further, numerical experiments are carried out for various system characteristics to examine the effects of different parameter. Using a special class of neuro-fuzzy systems i.e. Adaptive Network-based Fuzzy Interference Systems (ANFIS), we also approximate various performance measures. Finally, the conclusions and future research directions are provided.

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

Anomaly Intrusion Detection Based on Hyper-ellipsoid in the Kernel Feature Space

  • Lee, Hansung;Moon, Daesung;Kim, Ikkyun;Jung, Hoseok;Park, Daihee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1173-1192
    • /
    • 2015
  • The Support Vector Data Description (SVDD) has achieved great success in anomaly detection, directly finding the optimal ball with a minimal radius and center, which contains most of the target data. The SVDD has some limited classification capability, because the hyper-sphere, even in feature space, can express only a limited region of the target class. This paper presents an anomaly detection algorithm for mitigating the limitations of the conventional SVDD by finding the minimum volume enclosing ellipsoid in the feature space. To evaluate the performance of the proposed approach, we tested it with intrusion detection applications. Experimental results show the prominence of the proposed approach for anomaly detection compared with the standard SVDD.

Vibration Reduction of Forklift Truck Using Optimization of Engine Mount Layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.

Performance Evaluation of a Differentiated Service Mechanism by Traffic Models and Weight Factor (트래픽 모델과 Weight Factor에 의한 차등 서비스 메커니즘의 성능평가)

  • 전용희;박수영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.10-23
    • /
    • 2001
  • It is difficult to satisfy the QoS(Quality of Service) guarantee which is required by real-time application services only with the Best-Effort(BE) service adopted in the current Internet. Therefore, worldwide research is being made on the method of QoS provisioning. Among them, the QoS guarantee mechanism using the Diffserv(Differentiated Service) was discussed in this paper. First we analyzed how the DiffServ performance was affected by traffic models. For this, we performed the research for the random, bursts, and self-similar traffic modeling method. We then designed and implemented an OPNET simulator, and performed the simulation 7d performance evaluation for diverse input parameters. Based on the results of performance evaluation, it was confirmed that QoS guarantee is possible for the EF(Expedited Forwarding) class with the DiffServ function under every environments considered and the service separation between EF and BE(Best Effort) classes is also possible. We also analyzed the performance variation and dynamic behavior of DiffServ mechanism based on the resource allocation between E? and BE classes in WFQ(Weighted Fair Queueing).

  • PDF

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.