• 제목/요약/키워드: Research on gene therapy

검색결과 172건 처리시간 0.024초

진단의학 도구로서의 DNA칩 (DNAchip as a Tool for Clinical Diagnostics)

  • 김철민;박희경
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.97-100
    • /
    • 2004
  • The identification of the DNA structure as a double-stranded helix consting of two nucleotide chain molecules was a milestone in modern molecular biology. The DNA chip technology is based on reverse hybridization that follows the principle of complementary binding of double-stranded DNA. DNA chip can be described as the deposition of defined nucleic acid sequences, probes, on a solid substrate to form a regular array of elements that are available for hybridization to complementary nucleic acids, targets. DNA chips based on cDNA clons, oligonucleotides and genomic clons have been developed for gene expression studies, genetic variation analysis and genomic changes associated with disease including cancers and genetic diseases. DNA chips for gene expression profiling can be used for functional analysis in human eel Is and animal models, disease-related gene studies, assessment of gene therapy, assessment of genetically modified food, and research for drug discovery. DNA chips for genetic variation detection can be used for the detection of mutations or chromosomal abnormalities in cnacers, drug resistances in cancer cells or pathogenic microbes, histocompatibility analysis for transplantation, individual identification for forensic medicine, and detection and discrimination of pathogenic microbes. The DNA chip will be generalized as a useful tool in clinical diagnostics in near future. Lab-on-a chip and informatics will facilitate the development of a variety of DNA chips for diagnostic purpose.

  • PDF

면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향 (Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy)

  • 박재용;주소영;장희진;손지웅;김관영;김정석;김창호;박재호;이종기;정태훈
    • Tuberculosis and Respiratory Diseases
    • /
    • 제46권2호
    • /
    • pp.229-240
    • /
    • 1999
  • 연구배경: HSVtk/GCV를 이용한 유전자치료에서 면역반응은 1) adenovirus 혹은 retrovirus와 같이 벡타로 사용된 virus의 단백질, 2) 치료목적으로 이입된 HSVtk 유전자의 생성물, 3) 암세포에 대해서 일어날 수 있다. 그리고 이러한 면역반응은 cytokines의 생성 혹은 cytotoxic tumor-specific T-cell의 생성을 초래하여 bystander effect에 의한 살상효과를 증가시키거나, anti-tumor immunity를 유도하여 tumor vaccine의 효과를 나타낼 수 있다. 한편 이와는 대조적으로 면역반응용 HSVtk 유전자를 발현하는 세포들을 파괴하여 이입된 HSVtk 유전자의 발현기간을 제한함으로서 유전자치료의 효과를 감소시킬 수도 있다. 본 연구는 retrovirus 벡타로 이입한 HSVtk 유전자치료에서 면역체계가 bystander effect에 의한 살상효과에 미치는 영향을 규명하고 면역체계가 이입한 유전자의 발현에 미치는 영향을 조사하고자 하였다. 방 법: Immunocompetent mice인 Balb/c mouse와 immunodeficient mouse인 Balb/c-nude 및 SCID mouse에서 retrovirus 벡타를 사용하여 HSVtk 유전자를 이입하고 치료효과를 조사하였다. 그리고 Balb/c mouse에 면역억제제인 cyclosporin을 투여하여 면역억제제가 bystander effect 및 유전자치료 효과와 유전자의 발현기간에 미치는 영향을 조사하였다. 결 과: Balb/c mouse에 HSVtk 유전자를 이입하고 GCV를 투여한 군은 GCV를 투여하지 않은 대조군에 비해 종양의 성장이 유의하게 억제되었으나 Balb/c-nude mouse와 SCID mouse의 경우 GCV를 투여한 군과 대조군 사이에 유의한 차이가 없었다. 면역억제제인 cyclosporin을 투여한 군에서 유전자 치료 효과가 cyclosporin을 투여하지 않은 정상 mouse에 비해 치료효과가 유의하게 작았다. Cyclosporin 투여에 따른 유전자의 발현기간에는 유의한 차이가 없었다. 결 론: Retrovirus 벡타를 사용한 HSVtk 유전자치료에는 면역증강이 치료효과를 증가시킬 것으로 생각된다.

  • PDF

A Review of Recent Research in Treatment Approaches of Mucopolysaccharidosis (MPS)

  • Yang, Aram;Kim, Jinsup;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제3권2호
    • /
    • pp.37-40
    • /
    • 2017
  • Mucopolysaccharidosis (MPS) is caused by accumulation of the glycosaminoglycans in all tissues due to decreased activity of the lysosomal enzyme. Patients exhibit multisystemic signs and symptoms in a chronic and progressive manner, especially with changes in the skeleton, cardiopulmonary system, central nervous system, cornea, skin, liver, and spleen. In the past, treatment of MPS was limited to enzyme replacement therapy (ERT). The outcome for affected patients improved with the introduction of new technologies as hematopoietic stem cell transplantation, relegated to specific situations after ERT became available. Intrathecal ERT may be considered in situations of high neurosurgical risk but still it is experimental in humans. New insights on the pathophysiology of MPS disorders are leading to alternative therapeutic approaches, as gene therapy, inflammatory response modulators and substrate reduction therapy. In this paper, we will highlight the recent novel treatment and clinical trials for MPS and discuss with the goal of fostering an understanding of this field.

Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review)

  • Hye‑Rim Lee;Kwang‑Hyun Baek
    • Oncology Letters
    • /
    • 제41권5호
    • /
    • pp.2625-2635
    • /
    • 2019
  • The majority of natural killer (NK) cells serve an important role in eliminating malignant cells. The cytotoxic effects of NK cells were first identified against leukemia cells, and it is now hypothesized that they may have a critical role in leukemia therapy. The cellular functions of NK cells are mediated by their cell surface receptors, which recognize ligands on cancer cells. The role of NK cells is specifically regulated by the activating or inhibitory killer cell immunoglobulin-like receptors (KIRs) on their surface, which bind to the human leukocyte antigen (HLA) class I ligands present on the target cells. The association between KIR and HLA is derived from the diversity of KIR/HLA gene profiles present in different individuals, and this determines the cytotoxic effect of NK cells on cancer cells. Chronic myeloid leukemia (CML) is a hematological leukemia characterized by the hyper-proliferation of myeloid cells, with the majority of patients with CML presenting with abnormal immune cells. Tyrosine kinase inhibitors are the present standard therapy for CML, but are associated with numerous adverse side effects. Various studies have proposed CML therapy by immunotherapeutic approaches targeting the immune cells. This review summarizes the contents of NK cells and the association between KIR/HLA and leukemia, especially CML. This is followed by a discussion on the development of NK cell immunotherapy in hematological malignancies and research into strategies to enhance NK cell function for CML treatment.

BRCA1 Gene Mutations and Influence of Chemotherapy on Autophagy and Apoptotic Mechanisms in Egyptian Breast Cancer Patients

  • Abdel-Mohsen, Mohamed Ahmed;Ahmed, Omiama Ali;El-Kerm, Yasser Mostafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1285-1292
    • /
    • 2016
  • Background: It is well established that mutations in the BRCA1 gene are a major risk factor for breast cancer. Induction of cancer cell death and inhibition of survival are the main principles of cancer therapy. In this context, autophagy may have dual roles in cancer, acting on the one hand as a tumor suppressor and on the other as a mechanism of cell survival that can promote the growth of established tumors. Therefore, understanding the role of autophagy in cancer treatment is critical. Moreover, defects in apoptosis, programmed cell death, may lead to increased resistance to chemotherapy. Purpose: The aim of the present study was to detect BRCA1 gene mutations in order to throw more light on their roles as risk factors for breast cancer in Egypt. Secondly the role of autophagy and apoptosis in determining response to a fluorouracil, doxorubicin, cyclophosphamide (FAC) regimen was investigated. Materials and Methods: Forty-five female breast cancer cases and thirty apparently healthy females were enrolled in the present study. Serum levels of autophagic biomarkers, Beclin 1 and LC3 as well as the serum levels of apoptosis biomarkers Bcl-2 and Caspase-3 were measured before and after chemotherapy. Results: BRCA1 mutations were found in 5 (16.7%) and 44 (99.8%) of the controls and cancer patients, the most frequent being 5382insC followed by C61G and 185 delAG. The results revealed that chemotherapy caused elevation in serum concentration levels of the autophagic biomarkers (Beclin 1 and LC3). This elevation was associated with a significant decrease in serum concentration levels of Bcl-2 and significant increase in caspase-3 concentration levels (apoptotic markers). Conclusions: The results of the present study indicate a very high level of BRCA mutations in breast cancer cases in Egypt and point to involvement of autophagic and apoptotic machinery activation in response to FAC chemotherapy.

Non-viral siRNA Delivery Systems

  • Won, Young-Wook;Jang, Yeon-Lim;Kim, Jin-Seok;Jeong, Ji-Hoon;Kim, Yong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.119-129
    • /
    • 2010
  • The emergence of new biological drugs based on RNA interference (RNAi) technology has been one of the most attractive issues in the field of gene therapy for years. However, the use of siRNA therapeutics in clinical settings is still limited due to lack of appropriate delivery systems for the highly charged macromolecular drug. In this review, recent development of major non-viral siRNA delivery systems, including lipid, liposome, polymer, and peptide-based carriers, is to be summarized.

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan;Ignacimuthu, Savarimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2445-2452
    • /
    • 2012
  • RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

산사육복합방(山査肉複合方)이 생쥐의 비만억제에 미치는 영향 (The Inhibitory Effects of Sansayukbokhap-bang(SSYBHB) on the Obese-Mouse Induced High Fat Diet)

  • 김형준;홍서영;허동석;윤일지;오민석
    • 한방비만학회지
    • /
    • 제8권1호
    • /
    • pp.33-49
    • /
    • 2008
  • Objectives In order to investigate the effects of Sansayukbokhap-bang (SSYBHB) on the hematological and histological changes. Methods C57BL/6 mice were fed with high fat diet. C57BL/6 mice were divided into four groups and fed for 15weeks. Results 1. The body weight of SSYBHB intake mice was significantly lower than high fat diet group. 2. The final increase of body weight was decreased significantly. 3. The levels of ALT, AST, total cholesterol, LDL-Cholesterol, triglyceride, Leptin were decreased significantly. 4. The levels of creatinine were decreased but did not show significance. 5. The level of HDL-cholesterol and the expression of ${\beta}$3AR mRNA gene in 3T3-L1 Adipocytes were increased significantly. 6. Adipocytes' size was decreased significantly. 7. The expression of ${\beta}$3AR mRNA gene, Leptin mRNA gene and serotinin mRNA gene in Adipocytes tissue was decreased significantly. Conclusion Based on these results, it is proved that SSYBHB is effective on the therapy of obesity by referring to obese-gene and obese inhibitory. So, it is espected that the clinical application of SSYBHB can help the treatment of obesity.

  • PDF

한의학계(韓醫學界)의 암연구동향(癌硏究動向)과 연구(硏究) 전략(戰略)에 대한 연구(硏究) (Study on trends of cancer study in TKM and its research strategy in future)

  • 김성훈
    • 대한한의학회지
    • /
    • 제19권1호
    • /
    • pp.470-499
    • /
    • 1998
  • For the purpose of designing more successful cancer research, the strategy for cancer study in the field of Traditional Korean Medicine(TKM) during the 21th century was examined from the analysis of trends on cancer study in traditional korean medicine. The results were summarized as follows: 1. So far cancer research in TKM was chiefly done on cytotoxicity, side-effects by chemotherapy, tumor immunology, apoptosis, survival time with S-180 and pulmonary colonization assay and also clonogenic assay, cell adhesion assay, angiogenesis, cell-differentiation and side-effect by radiotherapy were partly performed. 2. It may be ideal that we should study synergistic effect between constituent drugs of prescriptions, tumor immunology, combined therapy between western and oriental medicines by reducing side-effect by radiotherapy and chemotherapy and antimetastasis according to the characteristics of oriental medicine chiefly and also supplement the studies on molecular biology, gene therapy, angiogensis and signal transduction. 3. We had better do specific-field research in cooperation between oriental medical colleges and Korea Institute of Oriental Medicine(KIOM) as well as study a target cancers such as hepatic cancer, pulmonary cancer and gastric cancer more intensively than all cancers domestically. 4. Our country must keep communication with China having many clinical data, Taiwan chiefly doing the combined tharapy between oriental and western medicines, Japan having done basic study actively on cancer.

  • PDF

Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

  • Oh, Doo-Byoung
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.438-444
    • /
    • 2015
  • Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]