• 제목/요약/키워드: Research dataset

Search Result 1,350, Processing Time 0.023 seconds

Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

  • Omar, Wael;Oh, Youngon;Chung, Jinwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.747-761
    • /
    • 2021
  • With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy. The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

The Role of Data Technologies with Machine Learning Approaches in Makkah Religious Seasons

  • Waleed Al Shehri
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.26-32
    • /
    • 2023
  • Hajj is a fundamental pillar of Islam that all Muslims must perform at least once in their lives. However, Umrah can be performed several times yearly, depending on people's abilities. Every year, Muslims from all over the world travel to Saudi Arabia to perform Hajj. Hajj and Umrah pilgrims face multiple issues due to the large volume of people at the same time and place during the event. Therefore, a system is needed to facilitate the people's smooth execution of Hajj and Umrah procedures. Multiple devices are already installed in Makkah, but it would be better to suggest the data architectures with the help of machine learning approaches. The proposed system analyzes the services provided to the pilgrims regarding gender, location, and foreign pilgrims. The proposed system addressed the research problem of analyzing the Hajj pilgrim dataset most effectively. In addition, Visualizations of the proposed method showed the system's performance using data architectures. Machine learning algorithms classify whether male pilgrims are more significant than female pilgrims. Several algorithms were proposed to classify the data, including logistic regression, Naive Bayes, K-nearest neighbors, decision trees, random forests, and XGBoost. The decision tree accuracy value was 62.83%, whereas K-nearest Neighbors had 62.86%; other classifiers have lower accuracy than these. The open-source dataset was analyzed using different data architectures to store the data, and then machine learning approaches were used to classify the dataset.

Similarity Measurement Between Titles and Abstracts Using Bijection Mapping and Phi-Correlation Coefficient

  • John N. Mlyahilu;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • This excerpt delineates a quantitative measure of relationship between a research title and its respective abstract extracted from different journal articles documented through a Korean Citation Index (KCI) database published through various journals. In this paper, we propose a machine learning-based similarity metric that does not assume normality on dataset, realizes the imbalanced dataset problem, and zero-variance problem that affects most of the rule-based algorithms. The advantage of using this algorithm is that, it eliminates the limitations experienced by Pearson correlation coefficient (r) and additionally, it solves imbalanced dataset problem. A total of 107 journal articles collected from the database were used to develop a corpus with authors, year of publication, title, and an abstract per each. Based on the experimental results, the proposed algorithm achieved high correlation coefficient values compared to others which are cosine similarity, euclidean, and pearson correlation coefficients by scoring a maximum correlation of 1, whereas others had obtained non-a-number value to some experiments. With these results, we found that an effective title must have high correlation coefficient with the respective abstract.

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

Lightweight Deep Learning Model for Heart Rate Estimation from Facial Videos (얼굴 영상 기반의 심박수 추정을 위한 딥러닝 모델의 경량화 기법)

  • Gyutae Hwang;Myeonggeun Park;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2023
  • This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.

Monitoring People's Emotions and Symptoms after COVID-19 Vaccine

  • Najwa N. Alshahrani;Sara N. Abduljaleel;Ghidaa A. Alnefaiy;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.202-206
    • /
    • 2023
  • Today, social media has become a vital tool. The world communicates and reaches the news and each other's opinions through social media accounts. Recently, considerable research has been done on analyzing social media due to its rich data content. At the same time, since the beginning of the COVID-19 pandemic, which has afflicted so many around the world, the search for a vaccine has been intense. There have been many studies analyzing people's feelings during a crisis. This study aims to understand people's opinions about available Coronavirus vaccines through a learning model that was developed for this purpose. The dataset was collected using Twitter's streaming Application Programming Interface (API) , then combined with another dataset that had already been collected. The final dataset was cleaned, then analyzed using Python. Polarity and subjectivity functions were used to obtain the results. The results showed that most people had positive opinions toward vaccines in general and toward the Pfizer one. Our study should help governments and decision-makers dispel people's fears and discover new symptoms linked to those listed by the World Health Organization.

Korean Text to Gloss: Self-Supervised Learning approach

  • Thanh-Vu Dang;Gwang-hyun Yu;Ji-yong Kim;Young-hwan Park;Chil-woo Lee;Jin-Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.32-46
    • /
    • 2023
  • Natural Language Processing (NLP) has grown tremendously in recent years. Typically, bilingual, and multilingual translation models have been deployed widely in machine translation and gained vast attention from the research community. On the contrary, few studies have focused on translating between spoken and sign languages, especially non-English languages. Prior works on Sign Language Translation (SLT) have shown that a mid-level sign gloss representation enhances translation performance. Therefore, this study presents a new large-scale Korean sign language dataset, the Museum-Commentary Korean Sign Gloss (MCKSG) dataset, including 3828 pairs of Korean sentences and their corresponding sign glosses used in Museum-Commentary contexts. In addition, we propose a translation framework based on self-supervised learning, where the pretext task is a text-to-text from a Korean sentence to its back-translation versions, then the pre-trained network will be fine-tuned on the MCKSG dataset. Using self-supervised learning help to overcome the drawback of a shortage of sign language data. Through experimental results, our proposed model outperforms a baseline BERT model by 6.22%.

Explainable analysis of the Relationship between Hypertension with Gas leakages (설명 가능한 인공지능 기술을 활용한 가스누출과 고혈압의 연관 분석)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • Hypertension is a severe health problem and increases the risk of other health issues, such as heart disease, heart attack, and stroke. In this research, we propose a machine learning-based prediction method for the risk of chronic hypertension. The proposed method consists of four main modules. In the first module, the linear interpolation method fills missing values of the integration of gas and meteorological datasets. In the second module, the OrdinalEncoder-based normalization is followed by the Decision tree algorithm to select important features. The prediction analysis module builds three models based on k-Nearest Neighbors, Decision Tree, and Random Forest to predict hypertension levels. Finally, the features used in the prediction model are explained by the DeepSHAP approach. The proposed method is evaluated by integrating the Korean meteorological agency dataset, natural gas leakage dataset, and Korean National Health and Nutrition Examination Survey dataset. The experimental results showed important global features for the hypertension of the entire population and local components for particular patients. Based on the local explanation results for a randomly selected 65-year-old male, the effect of hypertension increased from 0.694 to 1.249 when age increased by 0.37 and gas loss increased by 0.17. Therefore, it is concluded that gas loss is the cause of high blood pressure.

Deep Learning Models for Fabric Image Defect Detection: Experiments with Transformer-based Image Segmentation Models (직물 이미지 결함 탐지를 위한 딥러닝 기술 연구: 트랜스포머 기반 이미지 세그멘테이션 모델 실험)

  • Lee, Hyun Sang;Ha, Sung Ho;Oh, Se Hwan
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.149-162
    • /
    • 2023
  • Purpose In the textile industry, fabric defects significantly impact product quality and consumer satisfaction. This research seeks to enhance defect detection by developing a transformer-based deep learning image segmentation model for learning high-dimensional image features, overcoming the limitations of traditional image classification methods. Design/methodology/approach This study utilizes the ZJU-Leaper dataset to develop a model for detecting defects in fabrics. The ZJU-Leaper dataset includes defects such as presses, stains, warps, and scratches across various fabric patterns. The dataset was built using the defect labeling and image files from ZJU-Leaper, and experiments were conducted with deep learning image segmentation models including Deeplabv3, SegformerB0, SegformerB1, and Dinov2. Findings The experimental results of this study indicate that the SegformerB1 model achieved the highest performance with an mIOU of 83.61% and a Pixel F1 Score of 81.84%. The SegformerB1 model excelled in sensitivity for detecting fabric defect areas compared to other models. Detailed analysis of its inferences showed accurate predictions of diverse defects, such as stains and fine scratches, within intricated fabric designs.