• Title/Summary/Keyword: Research Obstacle

Search Result 623, Processing Time 0.041 seconds

Obstacle Detection Algorithm Using Forward-Viewing Mono Camera (전방 모노카메라 기반 장애물 검출 기술)

  • Lee, Tae-Jae;Lee, Hoon;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.858-862
    • /
    • 2015
  • This paper presents a new forward-viewing mono-camera based obstacle detection algorithm for mobile robots. The proposed method extracts the coarse location of an obstacle in an image using inverse perspective mapping technique from sequential images. In the next step, graph-cut based image labeling is conducted for estimating the exact obstacle boundary. The graph-cut based labeling algorithm labels the image pixels as either obstacle or floor as the final outcome. Experiments are performed to verify the obstacle detection performance of the developed algorithm in several examples, including a book, box, towel, and flower pot. The low illumination condition, low color contrast between floor and obstacle, and floor pattern cases are also tested.

Perception of small-obstacle using ultrasonic sensors for a mobile robot (이동로봇을 위한 초음파센서를 이용한 소형장해물 감지)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.21-24
    • /
    • 2004
  • This paper describes a perception of small-obstacle using ultrasonic sensors in a mobile robot. The research on the avoidance of the large-obstacles such as a wall, a large box, etc. using ultrasonic sensors has been generally progressed up to now. But the mobile robot could meet a small-obstacle such as a small plastic bottle of about 1 l in quantity, a small box of 7${\times}$7${\times}$7 cm3 in volume, and so on in its designated path, and could be disturbed by them in the locomotion of the mobile robot. So, it is necessary to research on the avoidance of a small-obstacle. In this paper, the small-obstacle perceiving system was designed and fabricated by arranging four ultrasonic sensors on the plastic plate to avoid a small-obstacle. The small-obstacle perceiving system was installed on the above part of the mobile robot with the slope of 40.7$^{\circ}$ to a horizontal line. The static characteristic test and the dynamic characteristic test were performed to know the information of the used ultrasonic sensors. As a result, the mobile robot with the small-obstacle perceiving system could avoid a small-obstacle, and could move in indoor environment safely.

  • PDF

A Qualitative Study on the College Life Adaptation obstacle of Adult Undergraduate (성인대학생 대학생활적응장애에 관한 질적연구)

  • Choi, Jung-Suk;Kim, Jin-Sook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.219-228
    • /
    • 2022
  • The purpose of this study is to explore what obstacles adult undergraduate experience in adapting to college life. To this end, in-depth interviews were conducted with 32 adult undergraduate attending colleges in Daegu and Gyeongbuk. For the study, Colaizzi's phenomenological research method was used and analyzed. As a result of the analysis, eight factors such as relation obstacle, bachelor's and curriculum operation obstacle, social recognition obstacle, study ability obstacle, college environment obstacle, economic obstacle, personal disposition obstacle, and temporal obstacle were found. Through the above research results, it was found that the college environment, which is operated mainly by general college students, is expressed as various types of obstacle for adult undergraduate who work and study at various ages and experiences. Based on the derived obstacle factors, it is expected that a follow-up study will be conducted to develop a measurement tool that can empirically explore the obstacle of adult undergraduate to adapt to college life.

Goal-directed Obstacle Avoidance Using Lane Method (레인 방법에 기반한 이동 로봇의 장애물 회피)

  • Do, Hyun-Min;Kim, Yong-Shik;Kim, Bong-Keun;Lee, Jae-Hoon;Ohba, Kohtaro
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 2009
  • This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacleis recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.

  • PDF

VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle (무인수상선의 단일 카메라를 이용한 VFH+ 기반 장애물 회피 기법)

  • Kim, Taejin;Choi, Jinwoo;Lee, Yeongjun;Choi, Hyun-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.426-430
    • /
    • 2016
  • Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.

Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

  • Eom, We-Sub;Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.381-387
    • /
    • 2012
  • The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name) that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension system. Also, based on the height of the obstacle, a simulation was carried out for the negative moment of the suspension system before the excellence of the suspension system suggested through the comparison of responding characteristics was proved.

A Study of Walking Guide for the Blind by Tactile Display (촉각제시에 의한 시각장애인 보행안내에 관한 연구)

  • Yoon, Myoung-Jong;Kang, Jeong-Ho;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.783-789
    • /
    • 2007
  • In this paper, firstly, we propose a generating method of the 3-D obstacle map using ultrasonic sensors. Secondly, we try to find the necessary stimulation conditions of compact tactile display device for effective transfer of obstacle information. The final goal of this research is the development of a walking guide system for the blind to walk safely. The walking guide system consists of a guide vehicle for the obstacle detection and a tactile display device for the transfer of the obstacle information. The guide vehicle, located in front of the walking blind, detects the obstacle using ultrasonic sensors. The processed information makes an obstacle map and transmits safe path and emergency situation to the blind by the tactile display. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed.

The Development of Obstacle Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Sensor

  • Yu, Whan-Sin;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.408-412
    • /
    • 2003
  • Obstacle avoidance algorithm is very important on an unmanned vehicle. Therefore, in this research, we propose a algorithm of obstacle avoidance and we can prove through vehicle test and sensor experiments. Obstacle avoidance must be divided into two parts: the first part includes the longitudinal control for acceleration and deceleration and the second part is the lateral control for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are confirmed through vehicle tests.

  • PDF

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

Study on the Effective Solution of Obstacle Avoidance Strategy for a Mobile Robot in the Guideline Navigation

  • Wang, Jiwu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2015-2018
    • /
    • 2005
  • Obstacle avoidance is a basic skill to make a mobile robot move effectively and safely even in any arbitrarily given environment. Because of the difficulty of self-location caused by unavoidable slip and drift errors of sensors and effective detection of any encountered obstacle, only finite and simple obstacle avoidance strategies can be carried out. In this paper we mainly explored how to make a robot perform effectively obstacle detection and avoidance in the guideline navigation with one CCD video camera and some supersonic sensors. Making use of the specially designed guideline, the detection and calculation of the geometric dimensions of the encountered obstacle became simpler. And possible avoidance strategies appropriate to our navigation were studied and the simulations results were given.

  • PDF