• Title/Summary/Keyword: Research Networks

Search Result 5,115, Processing Time 0.035 seconds

Computer Science Research Ideas Generation Using Neural Networks

  • Maghraby, Ashwag;Assaeed, Joanna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.127-130
    • /
    • 2022
  • The number of published journals, conferences, and research papers in computer science is increasing rapidly, which has led to a challenge in coming up with new and unique ideas for research. To alleviate the issue, this paper uses artificial neural networks (ANNs) to generate new computer science research ideas. It does so by using a dataset collected from IEEE published journals and conferences to train an ANN model. The results reveal that the model has a 14% success rate in generating usable ideas. The outcome of this paper has implications for helping both new and experienced researchers come up with novel research topics.

Routing Decision with Link-weight Calculating Function in WDM Switching Networks

  • Charoenphetkul, Pongnatee;Thipchaksurat, Sakchai;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1346-1349
    • /
    • 2004
  • In this paper, we have proposed the new link-weight calculating function using for routing decision in WDM networks. The proposed link-weight calculating functions includes following factors those are available wavelengths per link, distance loss, total wavelengths, and limited wavelength conversion. The calculated link-weight is applied into the algorithm of routing decision in order to determine the available lightpath that qualifies user requests. The objective is to improve the performance of wavelengths assignment with fast determining the suitable lightpath by using the proposed link-weights calculating function. The analytical model of WDM switching networks is introduced for numerical analysis. The link-weight calculating function is performed. Finally, the performance of proposed algorithm is displayed with numerical results in term of the blocking probability, the probability that connection requests from users are rejected due to there are no available lightpath to be assigned for them. It is also shown that the blocking probability is varied in depending on the number of available wavelengths and the degree of wavelength conversion. The numerical results also show that the proposed link-weight calculating function is more cost-effective choice for the routing decision in WDM switching networks.

  • PDF

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

A Study on Secure Routing for a Maritime Network Based on Mobile Multi-hop Wireless Networks (이동 다중 홉 무선망 모델에 기반한 해양통신망을 위한 경로배정 보안 연구)

  • Mun, Seong-Mi;Son, Joo-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.120-130
    • /
    • 2009
  • In recent years, many mobile wireless communication devices and applications have been deployed on the planet. The mobile multi-hop wireless network models appeared to provide means to access to networks where few infrastructure exists. However, the mobile multi-hop wireless networks have weaker points in attacks and intrusions than the wired and one-hop wireless networks. In this paper, the secure routing issues in most mobile multi-hop wireless network models are surveyed in depth. The state-of-the-art technologies and research activities are explained. Finally, the issues and technologies for the secure routing specific to a maritime network model are sufficiently discussed as conclusions.

Enhanced Dynamic Segment Protection in WDM Optical Networks under Reliability Constraints

  • Guo, Lei;Cao, Jin;Yu, Hongfang;Li, Lemin
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.99-102
    • /
    • 2006
  • In this letter, we study the protection problem in wavelength division multiplexing (WDM) optical networks, and propose a novel dynamic heuristic algorithm called differentiated reliable segment protection (DRSP). Differing from previous work, DRSP can effectively avoid the trap problem and is able to find a feasible solution for each connection request. Therefore, DRSP outperforms the previous work. Simulation results have shown to be promising.

  • PDF

Applying Hebbian Theory to Enhance Search Performance in Unstructured Social-Like Peer-to-Peer Networks

  • Huang, Chester S.J.;Yang, Stephen J.H.;Su, Addison Y.S.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.591-601
    • /
    • 2012
  • Unstructured peer-to-peer (p2p) networks usually employ flooding search algorithms to locate resources. However, these algorithms often require a large storage overhead or generate massive network traffic. To address this issue, previous researchers explored the possibility of building efficient p2p networks by clustering peers into communities based on their social relationships, creating social-like p2p networks. This study proposes a social relationship p2p network that uses a measure based on Hebbian theory to create a social relation weight. The contribution of the study is twofold. First, using the social relation weight, the query peer stores and searches for the appropriate response peers in social-like p2p networks. Second, this study designs a novel knowledge index mechanism that dynamically adapts social relationship p2p networks. The results show that the proposed social relationship p2p network improves search performance significantly, compared with existing approaches.

Revealing Regulatory Networks of DNA Repair Genes in S. Cerevisiae

  • Kim, Min-Sung;Lee, Do-Heon;Yi, Gwan-Su
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • DNA repair means a collection of processes that a cell identifies and corrects damage to genome sequence. The DNA repair processes are important because a genome would not be able to maintain its essential cellular functions without the processes. In this research, we make some gene regulatory networks of DNA repair in S. cerevisiae to know how each gene interacts with others. Two approaches are adapted to make the networks; Bayesian Network and ARACNE. After construction of gene regulatory networks based on the two approaches, the two networks are compared to each other to predict which genes have important roles in the DNA repair processes by finding conserved interactions and looking for hubs. In addition, each interaction between genes in the networks is validated with interaction information in S. cerevisiae genome database to support the meaning of predicted interactions in the networks.

  • PDF

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

A Survey on Neural Networks Using Memory Component (메모리 요소를 활용한 신경망 연구 동향)

  • Lee, Jihwan;Park, Jinuk;Kim, Jaehyung;Kim, Jaein;Roh, Hongchan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.8
    • /
    • pp.307-324
    • /
    • 2018
  • Recently, recurrent neural networks have been attracting attention in solving prediction problem of sequential data through structure considering time dependency. However, as the time step of sequential data increases, the problem of the gradient vanishing is occurred. Long short-term memory models have been proposed to solve this problem, but there is a limit to storing a lot of data and preserving it for a long time. Therefore, research on memory-augmented neural network (MANN), which is a learning model using recurrent neural networks and memory elements, has been actively conducted. In this paper, we describe the structure and characteristics of MANN models that emerged as a hot topic in deep learning field and present the latest techniques and future research that utilize MANN.

Downscaling Technique of the Monthly Precipitation Data using Support Vector Machine (지지벡터기구를 이용한 월 강우량자료의 Downscaling 기법)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kwon, Hyun-Han;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.112-115
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as support vector machine neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the monthly precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 2 grid points including $127.5^{\circ}E/35^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, which produced the best results from the previous study. The output node of neural networks models consist of the monthly precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of SVM-NNM and MLP-NNM performances for the downscaling of the monthly precipitation data. We should, therefore, construct the credible monthly precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF