• Title/Summary/Keyword: Research & Development Intensity

Search Result 727, Processing Time 0.026 seconds

A hybrid cardiac rehabilitation is as effective as a hospital-based program in reducing chest pain intensity and discomfort

  • Saeidi, Mozhgan;Soroush, Ali;Komasi, Saeid;Singh, Puneetpal
    • The Korean Journal of Pain
    • /
    • v.30 no.4
    • /
    • pp.265-271
    • /
    • 2017
  • Background: Health care services effort to provide alternative cardiac rehabilitation (CR) models to serve patients according to their preferences and needs. So, the present study aimed to assess and compare the effects of hospital-based and hybrid CR programs on chest pain intensity and discomfort in cardiac surgery patients. Methods: In this prospective study, 110 cardiac surgery patients were invited to the CR department of a hospital in the western part of Iran between March and July 2016. Patients were divided into two groups: hospital-based and hybrid CR. The hospital-based program included 26 sessions, and the hybrid program included 10 training sessions and exercise. The Brief Pain Inventory and Pain Discomfort Scale were used as research instrument, and data were analyzed using the paired t-test and ANCOVA. Results: The results indicated that both hospital-based and hybrid CR are effective in reducing the chest pain intensity and discomfort of cardiac surgery patients (P < 0.05). In addition, the comparison of scores before and after treatment using ANCOVA shows that no significant differences were observed between the two programs (P > 0.05). Conclusions: Traditional hospital-based CR delivery is still the first choice for treatment in developing countries. However, hybrid CR is as effective as a hospital-based program in reducing pain components and it includes only 38% of the total cost in comparison to hospital-based delivery. So, we recommend using hybrid CR according with the recommendations of American Heart Association about using CR for the management of angina symptoms.

Effects of Light on the Pigment Production and Chloroplast Development of Ginseng Hairy Roots (인삼 모상근의 색소 생성 및 엽록체 발달에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • The effects of light on the pigment production and chloroplast development were examined on ginseng hairy roots cultured in 1/2MS liquid medium. The chlorophyll and carotenoid production were increased from 1,000 to 3,500 lux condition, but decreased drastically in 7,000 lux condition. The anthocyanin production was significantly increased with increment light intensity(1,000∼7,000 lux). The thylakoid membrane of chloroplast was proplastid in dark condition and it began to develop into thylakoid membrane in 1,000 lux condition and then intact thylakoid membrane was developed in 3,500 lux condition. However, the development of thylakoid membrane in 7,000 lux condition was inhibited comparing to 3,500 lux condition. The total chlorophyll production in blue light condition were high comparing to other wavelength and same as 40% of total chlorophyll on white light(3,500 lux) condition. The chlorophyll and carotenoid production by sucrose concentration were high in 3% sucrose condition and anthocyanin production was high in 4% condition. The production of chlorophyll and carotenoid by light periods was high when explants were cultured in dark condition for 1 week and then transferred to light condition for 4 weeks. Our results suggest that pigment production and chloroplast development could be accelerated by light Intensity of specific wavelength in cultures of ginseng hairy root.

  • PDF

Analysis of the Effect of Heat Island on the Administrative District Unit in Seoul Using LANDSAT Image (LANDSAT영상을 이용한 서울시 행정구역 단위의 열섬효과 분석)

  • Lee, Kyung Il;Ryu, Jieun;Jeon, Seong Woo;Jung, Hui Cheul;Kang, Jin Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.821-834
    • /
    • 2017
  • The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon where the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occurs, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density in each administrative district, and as a result, the strength of heat island is also different. So It is necessary to analyze the difference of Urban Heat Island Intensity by administrative district and the cause. In this study, the UHI intensity of the administrative gu and the administrative dong were extracted from the Seoul metropolitan area and the differences among the administrative districts were examined. and linear regression analysis were conducted with The variables included in the three categories(weather condition, anthropogenic heat generation, and land use characteristics) to investigate the cause of the difference in heat UHI intensity in each administrative district. As a result of analysis, UHI Intensity was found to be different according to the characteristics of administrative gu, administrative dong, and surrounding environment. The difference in administrative dong was larger than gu unit, and the UHI Intensity of gu and the UHI Intensity distribution of dongs belonging to the gu were also different. Linear regression analysis showed that there was a difference in heat island development intensity according to the average wind speed, development degree, Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI) value. Among them, the SAVI and NDBI showed a difference in value up to the dong unit and The creation of a wind route environment for the mitigation of the heat island phenomenon is necessary for the administrative dong unit level. Therefore, it is considered that projects for mitigating heat island phenomenon such as land cover improvement plan, wind route improvement plan, and green wall surface plan for development area need to consider administrative dongs belonging to the gu rather than just considering the difference of administrative gu units. The results of this study are expected to provide the directions for urban thermal environment design and policy development in the future by deriving the necessity of analysis unit and the factors to be considered for the administrative city unit to mitigate the urban heat island phenomenon.

EU의 민간 R&D투자 증진을 위한 정책

  • Korean Associaton of Information & Telecommunication
    • 정보화사회
    • /
    • s.170
    • /
    • pp.58-63
    • /
    • 2004
  • 본 보고서는 EU에서 발간된 "Raising EU R&D Intensity: Improving the Effectiveness of the Mix of Public Support Mechanisms for Private Sector Research and Development"(2003)를 근간으로 하고, 관련된 국.내외 문헌을 종합하여 한국산업기술평가원 전략기획실에서 작성하여 지난 7월 26일 발표된 자료 중 일부분을 정리한 자료입니다.

  • PDF

Analysis on Suitability Light Intensity and Introduction Plan under the Indoor Lighting for the Native Evergreen Daphniphyllum macropodum (자생 상록 굴거리나무의 실내조명 하에서 적정광도 분석 및 도입방안)

  • Shin, Hyeon-Cheol;Yun, Jae-Gill;Choi, Kyoung-Ok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.110-117
    • /
    • 2012
  • This study was performed to determine light-adaptability under indoor lighting for Korean wild Daphniphyllum macropodum, and to provide an introduction plan for indoor spaces of landscape architecture. The experimental plants, Daphniphyllum macropodum were purchased from a farmhouse in Jejudo as anannualplant, and it was acclimatized in the glass-green house of the general farm of Gyeongnam National University of Science and Technology for40 days. The experiment was performed from February 15, 2010 to November 15, 2010. First, in the case of the fluorescent lamp, the growth and development condition was poor because the plants withered, or the leaves fell off under the 100lux to 500lux, but the condition under 1,000lux was good In the aspects of the number of leaves, form of the tree, photosynthesis rate in its body, and the value of sight, the best light intensity for the growth condition was under the 1,000lux. Second, in the case of the LED light, the growth and development condition was poor because the plants withered, or the leaves fell off under 100lux to 1,000lux, but the smooth growth and development was done under a more light intensity. The best intensity for the growth condition was under 2,000lux. Third, in the case of the three-wave light, the withering was serious by 1,000lux, and the growth and development was the worst amongst the four introduced lighting systems, therefore, growth under the three-wave light was incongruous. The best intensity for the growth condition was under 2,000lux. Fourth, in the case of the optical fiver, the withering did not existed under 100lux and growth was possible. The growth and development was the amongst in the four introduced lighting systems. Generally, in the more light intensity, more growth was observed, but the value of sight was higher under 1,000lux than under 2,000lux because the falling rate of leaves and the form of the tree was stable. The most effective light was under 1,000lux due to the high photosynthesis in its body. When Daphniphyllum macropodum is introduced into the indoor landscaping space considering the light, the optical fiber, fluorescent lamp, and LED light are suitable to introduce. The three-wave light is unfit. The most proper light intensity by the light source, in the case of the optical fiber, and fluorescent lamp, is 1,000lux, and, in the case of LED light, is 2,000lux. The wild Daphniphyllum macropodum is the species of tree to substitute the Schefflera actinophylla which is the introduced species, and it is expected to be use as the central tree in indoor spaces.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

The effect of external influence and operational management level on urban water system from water-energy nexus perspective (물-에너지 넥서스 관점에서 외부영향과 운영관리 수준이 도시물순환시스템에 미치는 영향)

  • Choi, Seo Hyung;Shin, Bongwoo;Song, Youngseok;Kim, Dongkyun;Shin, Eunher
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.587-602
    • /
    • 2023
  • Due to climate change, population growth, and economic development, the demand for water in the urban water system (UWS) and the energy required for water use constantly increase. Therefore, beyond the traditional method of considering only the water sector, the Nexus approach, which considers synergies and trade-offs between the water and energy sectors, has begun to draw attention. In previous researches, the Nexus methodology was used to demonstrate that the UWS is an energy-intensive system, analyze the water-energy efficiency relationship surrogated by energy intensity, and identify climate (long-term climate change, drought, type), geographic characteristics (topography, flat ratio, location), system characteristics (total supply water amount, population density, pipeline length), and operational management level (water network pressure, leakage rate, water saving) effects on the UWS. Through this, it was possible to suggest the direction of policies and institutions to UWS managers. However, there was a limit to establishing and implementing specific action plans. This study built the energy intensity matrix of the UWS, quantified the impact of city conditions, external influences, and operational management levels on the UWS using the water-energy Nexus model, and introduced water-energy efficiency criteria. With this, UWS managers will be able to derive strategies and action plans for efficient operation management of the UWS and evaluate suitability and validity after implementation.

Estimation of Lead Exposure Intensity by Industry Using Nationwide Exposure Databases in Korea

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.439-444
    • /
    • 2021
  • Background: In a previous study, we estimated exposure prevalence and the number of workers exposed to carcinogens by industry in Korea. The present study aimed to evaluate the optimal exposure intensity indicators of airborne lead exposure by comparing to blood lead measurements for the future development of the carcinogen exposure intensity database. Methods: Data concerning airborne lead measurements and blood lead levels were collected from nationwide occupational exposure databases, compiled between 2015 and 2016. Summary statistics, including the arithmetic mean (AM), geometric mean (GM), and 95th percentile level (X95) were calculated by industry both for airborne lead and blood lead measurements. Since many measurements were below the limits of detection (LODs), the simple replacement with half of the LOD and maximum likelihood estimation (MLE) methods were used for statistical analysis. For examining the optimal exposure indicator of airborne lead exposure, blood lead levels were used as reference data for subsequent rank correlation analyses. Results: A total of 19,637 airborne lead measurements and 32,848 blood lead measurements were used. In general, simple replacement showed a higher correlation than MLE. The results showed that AM and X95 using simple replacement could be used as optimal exposure intensity indicators, while X95 showed better correlations than AM in industries with 20 or more measurements. Conclusion: Our results showed that AM or X95 could be potential candidates for exposure intensity indicators in the Korean carcinogen exposure database. Especially, X95 is an optimal indicator where there are enough measurements to compute X95 values.

Development of Korean CARcinogen EXposure: Assessment of the Exposure Intensity of Carcinogens by Industry

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.308-314
    • /
    • 2022
  • Background: Occupational cancer is a global health issue. The Korean CARcinogen EXposure (K-CAREX), a database of CARcinogen EXposure, was developed for the Korean labor force to estimate the number of workers exposed to carcinogens by industry. The present study aimed to estimate the intensity of exposure to carcinogens by industry, in order to supply complementary information about CARcinogen EXposure intensity to the K-CAREX. Methods: We used nationwide workplace monitoring data from 2014 to 2016 and selected target carcinogens based on the K-CAREX list. We computed the 95th percentile levels of measurements for each industry by carcinogens. Based on the 95th percentile level relative to the occupational exposure limit, we classified the CARcinogen EXposure intensity into five exposure ratings (1-5) for each industry. Results: The exposure ratings were estimated for 21 carcinogenic agents in each of the 228 minor industry groups. For example, 3,058 samples were measured for benzene in the manufacturing industry of basic chemicals. This industry was assigned a benzene exposure rating of 3. Conclusions: We evaluated the CARcinogen EXposure ratings across industries in Korean workers. The results will provide information on the exposure intensity to carcinogens for integration into the K-CAREX. Furthermore, it will aid in prioritizing control efforts and identifying industries of concern.

Damage detection through structural intensity and vibration based techniques

  • Petrone, G.;Carzana, A.;Ricci, F.;De Rosa, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.613-637
    • /
    • 2017
  • The development systems for the Structural Health Monitoring has attracted considerable interest from several engineering fields during the last decades and more specifically in the aerospace one. In fact, the introduction of those systems could allow the transition of the maintenance strategy from a scheduled basis to a condition-based approach providing cost benefits for the companies. The research presented in this paper consists of a definition and next comparison of four methods applied to numerical measurements for the extraction of damage features. The first method is based on the determination of the Structural Intensity field at the on-resonance condition in order to acquire information about the dissipation of vibrational energy throughout the structure. The Damage Quantification Indicator and the Average Integrated Global Amplitude Criterion methods need the evaluation of the Frequency Response Function for a healthy plate and a damaged one. The main difference between these two parameters is their mathematical definition and therefore the accuracy of the scalar values provided as output. The fourth and last method is based on the Mode-shape Curvature, a FRF-based technique which requires the application of particular finite-difference schemes for the derivation of the curvature of the plate. All the methods have been assessed for several damage conditions (the shape, the extension and the intensity of the damage) on two test plates: an isotropic (steel) plate and a 4-plies composite plate.