• Title/Summary/Keyword: Resalinization

Search Result 9, Processing Time 0.037 seconds

Analysis of Salinity during the Growing Period in the Unripened Tidal Reclaimed Paddy Fields (간척초기답의 벼생육기간중 염분농도 분석)

  • Son, Jae-Gwon;Koo, Ja-Woong;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.3-11
    • /
    • 2000
  • The high salt concentration of reclaimed tidelands in the beginning of reclamation interferes with the growth of most crops. Although the crops are cultivated in the unripened tidal reclaimed paddy fields after desalinization to be arable, they we apt to be injured from salt by the resalinization through accumulated salts in the root zone during the growing period. In oder to make the reasonable irrigation plan in the unripened tidal reclaimed paddy fields, the preventive water requirements of resalinization as well as leaching requirements have to be included in irrigation water requirements. The critical salinity for the normal growth of crops should be determined to estimate the preventive water requirements of resalinization, and the changes of salinity in soil and water should be analyzed during the growing period, In this study, the growth tests of crops were conducted by soil textures and water management methods in the experimental field with lysimeters, using the samples of good drainage soils and poor drainage soils. And the changes of salinity in soil and water during the growing period, were analyzed to obtain the basic data for determining the critical salinity and making the estimation criteria of the preventive water requirements of resalinization. As the results obtained from analyzing the changes of salinity during the growing period in the unripened tidal reclaimed paddy fields, the exchanging interval of water for the prevention of resalinization was estimated to be within two weeks in good drainage soils and a week in poor drainage soils. And the total exchanging requirements of water for the prevention of resalinization during the growing period was estimated to be over 280mm in good drainage soils and 540mm in poor drainage soils.

  • PDF

A Calculation of Agricultural Water Demand According to the Farmland Developing Plan on the Saemangeum Tidal Land Reclamation Project (새만금 간척지구의 농업용지 토지이용계획을 고려한 농업용수 수요량 산정)

  • Jang, JeongRyeol;Lee, SungHack;Cho, Youngkweon;Choi, JinYong
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • The purpose of this study is to calculate agricultural water demand as considering landuse plan of the farm land on the Saemangeum tidal land reclamation project. This study based on the farm landuse plan(2012) and considered some items which did not included previous work like prevention water for resalinization for paddy and upland and muli-purpose water for upland. This study showed that the agricultural water demand estimated $145.123Mm^3/yr$, which is needed as much $14.792Mm^3/yr$ as more water than previous work. The difference comes from the change of unit water demand. Water demand is possible to be changed if guidelines are improved and detailed design work is completed through further study. Especially, the more studies for prevention water for resalinization in a tidal reclaimed farmland and water demand for a horticulture are needed.

  • PDF

Effect of Drip Irrigation Level on Soil Salinity and Growth of Broccoli (Brassica oleracea L. var. italica) in Saemangeum Reclaimed Tidal Land (새만금간척지에서 점적관수량이 토양염농도와 녹색꽃양배추의 생육에 미치는 영향)

  • Bae, Huisu;Hwang, Jaebok;Kim, Haksin;Gu, Bonil;Choi, Inbae;Park, Taeseon;Park, Hongkyu;Lee, Suhwan;Oh, Yangyeol;Lee, Sanghun;Lee, Geonhwi
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • The objective of this study was to investigate the effect of drip irrigation level on soil salinity and growth of broccoli (Brassica oleracea L. var. italica) at the 'Saemangeum Reclaimed Tidal Land' from April to June, 2015. Drip irrigation was conducted at 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ level for reduction of resalinization in the plastic vinyl house using 10cm spacing drip irrigation tape. At harvesting stage, the average EC of surface soil was $10.9dS{\cdot}m^{-1}$ for $1.5mm{\cdot}day^{-1}$, $11.5dS{\cdot}m^{-1}$ for $3.0mm{\cdot}day^{-1}$ and $5.1dS{\cdot}m^{-1}$ for $6.0mm{\cdot}day^{-1}$ and was significantly reduced by 52~56% in $6.0mm{\cdot}day^{-1}$ treated plot compared to those in 1.5 and $3.0mm{\cdot}day^{-1}$ plots. The fresh bud weights of 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ treatment plots were 60.9, 129.1 and $371.3g{\cdot}plant^{-1}$, respectively. The estimated soil EC for 50% yield reduction was $7.6dS{\cdot}m^{-1}$ and the desalinization depth by drip irrigation was 30~40cm in soil profile. The total amount of drip irrigation water was estimated to be 422mm and the daily drip irrigation level was $6.0mm{\cdot}day^{-1}$ for the prevention of resalinization during the broccoli growing period at the 'Saemangeum Reclaimed Tidal Land'. Our results suggested that drip irrigation shows effectiveness on the lowering the soil salinity according to the drip irrigation quantity but it needs more research on this study because dynamics of salts in soil can vary with many factors such as soil physico-chemical properties and seasonal climate.

Irrigation Water Requirements of Unripened Reclaimed Paddy Fields (개발초기 간척답의 관개용수량 산정에 관한 연구)

  • Son, Jae-Gwon;Koo, Ja-Woong;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.26-40
    • /
    • 2002
  • In order to plan the effective irrigation project in unripened reclaimed paddy fields, the estimation of criteria of irrigation water requirements for the normal growth of crops is very important. This study was carried out to determine the leaching requirements before cultivating crops, the consumptive use of water by the growth of crops, and preventive water requirements of resalinization during the growth period in unripened reclaimed paddy fields. The irrigation water requirements in good permeable soils were estimated as 2,530mm for culvert treatment(S1CW3) and 3,080mm for non-culvert treatment(S1NW4), which were 1.8 times and 2.4 times as high as the irrigation water requirements in common rice fields, respectively. And, in case of poor permeable soils, 3,360mm for culvert treatment(S2CW4) and 3.580mm for non-culvert treatment(S2NW4) were estimated, which were 2.5 times and 2.8 times higher than the normal irrigation water requirements, respectively.

Changes of Soil Properties with Various Soil Amendments in Saemangeum Reclaimed Tidal Saline Soil

  • Lee, Sanghun;Kim, Hong-Kyu;Hwang, Seon-Woong;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.281-287
    • /
    • 2013
  • Due to its high salt content and poor physical properties in reclaimed tidal lands, it is important to ameliorate soil physical properties to improve the efficiency of desalination. The objective of this study was to evaluate the changes of soil properties at Saemangeum reclaimed tidal saline soil with various soil amendments. Field experiment was conducted at Saemangeum reclaimed tidal land in Korea and the dominant soil series was Munpo series (coarse loamy, mixed, nonacid, Mesic, Typic, Fluvaquents). Woodchips, crushed-stone, oyster shell, coal bottom ash, and rice hull were added as soil amendments and mixed into surface soil to improve soil physical properties. There was large variability in soil hardness, but oyster shell treatment was significantly lower soil hardness at surface layer. Soil hardness was not significantly different below 15 cm depth. Infiltration rate was also significantly greater at oyster shell treatment. This may be due to the leaching of Ca ions from oyster shell and improved soil properties. However, there was no statistical significant difference of the soil bulk density, moisture content, and porosity. Improved physical properties increased desalinization rate in soil and retarded the resalinization rate when evapotranspiration rate was high. Although soil salinity was significantly decreased with oyster shell amendment, soil pH was increased that should be made up as a soil amendment. Our results indicated that oyster shell application increased infiltration rate and improved soil hardness, and thus oyster shell could be used to improve soil salinity level at Saemangeum reclaimed tidal saline soil.

Soil Characteristics of Newly Reclaimed Tidal Land and Its Changes by Cultivation of Green Manure Crops

  • Lee, Kyeong-Bo;Kang, Jong-Gook;Lee, Kyeong-Do;Lee, Sanghun;Hwang, Seon-Ah;Hwang, Seon-Woong;Kim, Hong-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • This study was conducted to investigate the soil characteristics of newly reclaimed tidal land and the effect of green manure crops on soil properties. Summer green manure crops such as sesbania (Sesbania grandiflora), barnyard grass (Echinochloa spp.) and sorghum${\times}$sudangrass hybrid (Sorghum bicolor L.) were cultivated at Hwaong, Ewon, Saemangeum and Yongsangang area. Soil pH of reclaimed tidal land was relatively high, but organic matter and available phosphorus contents were lower compared to the optimum range for common upland crops. Soil nutrient contents were unbalanced for upland crop growth. Yield of green manure crops had a wide spatial variation. Nitrogen content in green manure crops was the greater in Sesbania and it was estimated that major nutrient ($N-P_2O_5-K_2O$) supply amount were 150-40-370, 220-50-170 and 140-50-250 $kg\;ha^{-1}$ from sorghum${\times}$sudangrass hybrid, sesbania and barnyard grass, respectively. Based on these results, desalination is required to grow the upland crops at newly reclaimed tidal lands and management practices are necessary to reduce the salt damage by resalinization during the growing seasons. To improve the productivity and increase the nutrient utilization rate, soil physicochemical properties need to be improved to the level for upland crops by application of organic matter and fertilizer.

Capillary Characteristics of Water and Cations in Multi-layered Reclaimed Soil with Macroporous Subsurface Layer Utilizing Coal Bottom Ash

  • Ryu, Jin-Hee;Chung, Doug-Young;Ha, Sang-Keon;Lee, Sang-Bok;Kim, Si-Ju;Kim, Min-Tae;Park, Ki-Do;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.406-411
    • /
    • 2014
  • Serious problems in reclaimed land agriculture are high soil salinity and poor vertical drainage, so desalinization in these soils is very difficult. Also, although desalinization is accomplished in reclaimed top soils, before long, soils are resalinized according to capillary rise of salts from the subsurface soils. To resolve these problems, multi-layered soil columns with subsurface layer of macroporous medium utilizing coal bottom ash (CBA) were constructed and the effects of blocked resalinization of these soils were investigated. In this experiment soil samples were collected from Munpo series (coarse-loamy, nonacid, mixed, mesic, typic Fluvaquents). The soil texture was silt loam and the EC was $33.9dS\;m^{-1}$. As for groundwater seawater was used and groundwater level of 1 cm from the bottom was maintained. The overall rate of capillary rise was $2.38cm\;hr^{-1}$ in soil 60 cm column, $0.25cm\;hr^{-1}$ in topsoil (30 cm) + CBA (5 cm) + subsurface soil (10 cm) column and $0.08cm\;hr^{-1}$ in topsoil (30 cm) + CBA (10 cm) + subsurface soil (10 cm) column. In multi-layered soil columns with CBA 20, 30 cm layer, wetting front due to capillary rise could not be seen in top soil layer. After 70 days capillary rise experiment water soluble Na+ accumulated in top soil of soil columns with CBA 20, 30 cm was diminished by 92.8, 96.5% respectively in comparison with Na+ accumulated in top soil of soil 60 cm column because CBA layer cut off capillary rise of salts from the subsurface soil. From these results we could conclude that the macroporous layer utilizing CBA placed at subsurface layer cut off capillary rise of solutes from subsurface soil, resulting in lowered level of salinity in top soil and this method can be more effective in newly reclaimed saline soil.

Characteristics of a Reclaimed Tidal Soil for Effective Resalization at Saemangum and Youngsan-River

  • Chung, Doug-Young;Kim, Hyejin;Park, Misuk;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1222-1229
    • /
    • 2012
  • The total area of a reclaimed tidal soil distributed on the south-west coast is approximately 156,600 ha, and the soil contains high contents of sand and silt as well as highly saline. Most of the reclaimed tidal soils are used as a paddy due to bad permeability and high groundwater table, resulting in easy accumulation of salts on the soil surface by capillary rise. Therefore, resalinization may occur because of rise of groundwater table after desalinization. The researches related to the reclaimed tidal soil mainly focused on desalinazation while most of the researches completed were limited to yields of crop based on desalinazation. pH of old reclaimed tidal soil is neutral or less than 7 while that of newly developed reclaimed tidal soils is greater than 7, that cause N-fertilizer to be volatile as ammonia. Thus, the physical and chemical properties should be investigated to be used as an arable upland instead of a paddy soil due to change in government policy. We need to develop measures to make soils grow crops normally by identifying problems related to reclaimed tidal soils.