• Title/Summary/Keyword: ResNet Algorithm

Search Result 68, Processing Time 0.031 seconds

A Novel Transfer Learning-Based Algorithm for Detecting Violence Images

  • Meng, Yuyan;Yuan, Deyu;Su, Shaofan;Ming, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1818-1832
    • /
    • 2022
  • Violence in the Internet era poses a new challenge to the current counter-riot work, and according to research and analysis, most of the violent incidents occurring are related to the dissemination of violence images. The use of the popular deep learning neural network to automatically analyze the massive amount of images on the Internet has become one of the important tools in the current counter-violence work. This paper focuses on the use of transfer learning techniques and the introduction of an attention mechanism to the residual network (ResNet) model for the classification and identification of violence images. Firstly, the feature elements of the violence images are identified and a targeted dataset is constructed; secondly, due to the small number of positive samples of violence images, pre-training and attention mechanisms are introduced to suggest improvements to the traditional residual network; finally, the improved model is trained and tested on the constructed dedicated dataset. The research results show that the improved network model can quickly and accurately identify violence images with an average accuracy rate of 92.20%, thus effectively reducing the cost of manual identification and providing decision support for combating rebel organization activities.

Deep Learning Based Radiographic Classification of Morphology and Severity of Peri-implantitis Bone Defects: A Preliminary Pilot Study

  • Jae-Hong Lee;Jeong-Ho Yun
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.156-163
    • /
    • 2023
  • Purpose: The aim of this study was to evaluate the feasibility of deep learning techniques to classify the morphology and severity of peri-implantitis bone defects based on periapical radiographs. Materials and Methods: Based on a pre-trained and fine-tuned ResNet-50 deep learning algorithm, the morphology and severity of peri-implantitis bone defects on periapical radiographs were classified into six groups (class I/II and slight/moderate/severe). Accuracy, precision, recall, and F1 scores were calculated to measure accuracy. Result: A total of 971 dental images were included in this study. Deep-learning-based classification achieved an accuracy of 86.0% with precision, recall, and F1 score values of 84.45%, 81.22%, and 82.80%, respectively. Class II and moderate groups had the highest F1 scores (92.23%), whereas class I and severe groups had the lowest F1 scores (69.33%). Conclusion: The artificial intelligence-based deep learning technique is promising for classifying the morphology and severity of peri-implantitis. However, further studies are required to validate their feasibility in clinical practice.

UAV-based bridge crack discovery via deep learning and tensor voting

  • Xiong Peng;Bingxu Duan;Kun Zhou;Xingu Zhong;Qianxi Li;Chao Zhao
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.105-118
    • /
    • 2024
  • In order to realize tiny bridge crack discovery by UAV-based machine vision, a novel method combining deep learning and tensor voting is proposed. Firstly, the grid images of crack are detected and descripted based on SE-ResNet50 to generate feature points. Then, the probability significance map of crack image is calculated by tensor voting with feature points, which can define the direction and region of crack. Further, the crack detection anchor box is formed by non-maximum suppression from the probability significance map, which can improve the robustness of tiny crack detection. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method in the Xiangjiang-River bridge inspection. Compared with the original tensor voting algorithm, the proposed method has higher accuracy in the situation of only 1-2 pixels width crack and the existence of edge blur, crack discontinuity, which is suitable for UAV-based bridge crack discovery.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.

A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer (그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구)

  • Ji Hun Bae;Ju Hwan Lee;Gwang Hyun Yu;Gyeong Ju Kwon;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Recently, a convolutional neural network (CNN) based system is being developed to overcome the limitations of human resources in the apple quality classification of farmhouse. However, since convolutional neural networks receive only images of the same size, preprocessing such as sampling may be required, and in the case of oversampling, information loss of the original image such as image quality degradation and blurring occurs. In this paper, in order to minimize the above problem, to generate a image patch based graph of an original image and propose a random walk-based positional encoding method to apply the graph transformer model. The above method continuously learns the position embedding information of patches which don't have a positional information based on the random walk algorithm, and finds the optimal graph structure by aggregating useful node information through the self-attention technique of graph transformer model. Therefore, it is robust and shows good performance even in a new graph structure of random node order and an arbitrary graph structure according to the location of an object in an image. As a result, when experimented with 5 apple quality datasets, the learning accuracy was higher than other GNN models by a minimum of 1.3% to a maximum of 4.7%, and the number of parameters was 3.59M, which was about 15% less than the 23.52M of the ResNet18 model. Therefore, it shows fast reasoning speed according to the reduction of the amount of computation and proves the effect.

Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel (관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용)

  • Kim, Kwi-Hoon;Kim, Ma-Ga;Yoon, Pu-Reun;Bang, Je-Hong;Myoung, Woo-Ho;Choi, Jin-Yong;Choi, Gyu-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

Analysis of Infrared Characteristics According to Common Depth Using RP Images Converted into Numerical Data (수치 데이터로 변환된 RP 이미지를 활용하여 공동 깊이에 따른 적외선 특성 분석)

  • Jang, Byeong-Su;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.77-84
    • /
    • 2024
  • Aging and damaged underground utilities cause cavity and ground subsidence under roads, which can cause economic losses and risk user safety. This study used infrared cameras to assess the thermal characteristics of such cavities and evaluate their reliability using a CNN algorithm. PVC pipes were embedded at various depths in a test site measuring 400 cm × 50 cm × 40 cm. Concrete blocks were used to simulate road surfaces, and measurements were taken from 4 PM to noon the following day. The initial temperatures measured by the infrared camera were 43.7℃, 43.8℃, and 41.9℃, reflecting atmospheric temperature changes during the measurement period. The RP algorithm generates images in four resolutions, i.e., 10,000 × 10,000, 2,000 × 2,000, 1,000 × 1,000, and 100 × 100 pixels. The accuracy of the CNN model using RP images as input was 99%, 97%, 98%, and 96%, respectively. These results represent a considerable improvement over the 73% accuracy obtained using time-series images, with an improvement greater than 20% when using the RP algorithm-based inputs.