• 제목/요약/키워드: Repulsive Potential

검색결과 69건 처리시간 0.028초

2차원 평면에서 이동장애물에 대한 항공기의 유도/회피기동 연구 (Aircraft Collision-Avoidance/Guidance Strategy in Dynamic Environments for Planar Flight)

  • 이인석
    • 한국항공우주학회지
    • /
    • 제32권7호
    • /
    • pp.69-75
    • /
    • 2004
  • 비행중인 다른 항공기를 회피하며 항공기를 목표점까지 유도하는 문제를 2차원 평면에서 고려하였다. 항공기는 속도의 크기가 일정한 질점이며, 제어입력으로 측가속도를 사용하는 것으로 가정하였다. 이동장애물에는 척력 포텐셜함수를 목적점에는 인력 포텐셜함수를 인공적으로 부여하여 항공기에 척력과 인력이 작용하도록 하였다. 유도/회피명령은 이들 포텐셜력과 상대속도를 사용하여 실시간으로 구현 가능한 유도/회피법칙을 구현하였다. Log 형태의 포텐셜함수를 사용하면 구현된 유도법칙은 잘 알려진 비례항법유도법칙이 되며, 회피법칙은 장애물까지 도달시간에 반비례하고 시선각 변화의 반대 방향으로 항공기를 회전시킨다. 제안된 유도/회피법칙은 시뮬레이션을 통하여 타당성을 검증하였다.

침투성 구형 모델에 관한 분자 전산 연구: I. 상태 방정식 (Molecular Simulation Studies for Penetrable-Sphere Model : I. Equation of State)

  • 김춘호;서숭혁
    • 폴리머
    • /
    • 제35권4호
    • /
    • pp.325-331
    • /
    • 2011
  • 침투 가능한 수형 모델 유체의 방정식을 고찰하는 다양한 범위의 입자 충전 분을 ${\phi}$ 및 척력적 에너지 상수 ${\varepsilon}^*$에 대하여 분자 동력학 방법을 이용한 전산 모사를 수행하였다. 전산 모사로부터 얻어진 결과는 문헌에 보고된 고침투 근사식 및 저침투 근사식으로 알려진 두 가지의 한계적 이론식들과 직접 비교하였다. 낮은 척력적 에너지를 갖는 ${\varepsilon}^*$ <3.0의 경우 전산 모사 결과는 이들 두 이론식들과 일치하였으나, 반면 입자간 상호 포텐셜 에너지가 입자 자체 평균 운동 에너지의 두 배 이상 높은 척력적 에너지를 갖는 ${\varepsilon}^*{\geqq}3.0$의 경우 이들 이론식들 모두 전산 모사 결과를 재현하지 못하였다. 이는 특히 높은 입자 밀도와 높은 척력적 에너지를 갖는 ${\phi}{\geqq}0.7$${\varepsilon}^*$=6.0의 경우 입자들의 클라스터 형성 및 자체 입자 배제 부피에 따른 비연속적 크기 효과에 기인되었다.

고형오구 입자크기가 고형오구의 세척성에 미치는 영향 (The Effect of Particle Size on the Detergency of Particulate Soil)

  • 문미화;강인숙
    • 한국의류학회지
    • /
    • 제34권4호
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

폴리올 프로세스를 통한 연료전지용 백금 촉매 제조 (Investigation of carbon supported pt nano catalyst preparation by the polyol process for fuel cell applications)

  • 오형석;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.200-203
    • /
    • 2007
  • Parametric investigation of the polyol process for the preparation of carbon supported Pt nano particles as catalysts for fuel cells was carried out. It was found that the concentration of glycolate anion, which is a function of pH, plays an important role in controlling Pt particle size and loading on carbon. It was observed that Pt loading decreased with increasing alkalinity of the solution. As evidenced by zeta potential measurement, this was mainly due to poor adsorption or repulsive forces between the metal colloids and the supports. In order to modify the conventional polyol process, the effect of the gas purging conditions on the characteristics of Pt/C was examined. By the optimization of the gas environment during the reaction, it was possible to obtain high loading of 39.5wt% with a 2.8 nm size of Pt particle. From the single cell test, it was found that operating in ambient $O_{2}$ at 70oC can deliver high performance of more than 0.6 V at 1.44 A $cm^{-2}$.

  • PDF

Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법 (Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink)

  • 강요환;이민철;김지언;윤성민;노치범
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

진동방식의 원자간력 현미경으로 표면형상 측정시 발행하는 혼돈현상의 적응제어 (Adaptive Control of the Atomic Force Microscope of Tapping Mode: Chaotic Behavior Analysis)

  • 강동헌;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.57-65
    • /
    • 2000
  • In this paper, a model reference adaptive control for the atomic force microscope (AFM) of tapping mode is investigated. The dynamics between the AFM system and al sample is mathematically modeled as a second order spring-mass-damper system with oscillatory inputs. The attractive and repulsive forces between the tip of the AFM system and the sample are derived using the Lennard-Jones potential energy. By non-dimensionalizing the displacement of the tip and the input frequency, the chaotic behavior near a resonance frequency is better depicted through the non-dimensionalized equations. Four nonlinear analysis techniques, a phase portrait, sensitive dependence on initial conditions, a power spectral density function, and a Pomcare map are investigated. Because the equations of motion derived in this paper involve unknown parameter values such as the damping effect of the air and the interaction constants between materials, the standard model reference adaptive control is adopted. Two control objectives, the prevention of chaos and the tracking of reference signal, are pursued. Simulation results are included.

  • PDF

딱딱한 막대 모양 분자로 이루어진 1차원 유체의 통계 역학적 분석 (A Statistical-Mechanical Analysis of One-Dimensional Fluid of Rigid Rods)

  • 임경희
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.45-50
    • /
    • 2009
  • Three-dimensional, statistical-mechanical formulations of problems are usually untractable analytically, and therefore they are commonly solved numerically. However, their one-dimensional counterparts are always to be solved analytically. In general analytical solutions sheds more insights to the problems than numerical solutions. Hence, solutions of one-dimensional problems may provide key properties to the problems, when they are extended to three dimensions. In this article, thermodynamic properties of one-dimensional fluid comprising molecules of rigid rods are analyzed statistical-mechanically. Molecules of rigid rods are characterized with repulsive or excluded volume effect. It is observed that this feature is well reflected in thermodynamic functions such as Helmholtz free energy. volumetric equation of state. chemical potential, entropy, etc.

Flexible and Scalable Formation for Unicycle Robots

  • 김동헌;이용권;김성일;신위재;이현우
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.519-522
    • /
    • 2005
  • This paper presents a self-organizing scheme for multi-agent swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, unicycle robots self-organize to flock and arrange group formation through attractive and repulsive forces among themselves. It is also shown how localized distributed controls are utilized throughout group behaviors such as formation and migration. In the paper, the proposed formation ensures safe separation and good cohesion performance among the robots. Several examples show that the proposed method for group formation performs the group behaviors such as reference path following, obstacle avoidance and flocking, and the formation characteristics such as flexibility and scalability, effectively.

  • PDF

로컬 경로 계획을 위한 포텐셜 함수 기반의 가상 탈출 루트 연구 (Escaping Route Method in a Trap Situation for Local Path Planning)

  • 김동헌;이현우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1989-1990
    • /
    • 2006
  • This paper presents an escaping route method in a trap situation (a case that the robot is trapped in a local minimum by the potential of obstacles). In this scheme, the APFs for path planning have a multiplicative and auditive configuration between APFs for goal destination and APFs for obstacle avoidance unlike conventional configuration where APFs for obstacle avoidance is added to APFs for goal destination. The virtual escaping route method is proposed to allow a robot to escape from a local minimum in trap situation where the total forces composed of repulsive forces by obstacles and attractive force by a goal are zero.

  • PDF

Self-organization of Swarm Systems by Association

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.253-262
    • /
    • 2008
  • This paper presents a framework for decentralized control of self-organizing swarm systems based on the artificial potential functions (APFs). The framework explores the benefits by associating agents based on position information to realize complex swarming behaviors. A key development is the introduction of a set of association rules by APFs that effectively deal with a host of swarming issues such as flexible and agile formation. In this scheme, multiple agents in a swarm self-organize to flock and achieve formation control through attractive and repulsive forces among themselves using APFs. In particular, this paper presents an association rule for swarming that requires less movement for each agent and compact formation among agents. Extensive simulations are presented to illustrate the viability of the proposed framework.