Although nuclear transfer (NT) techniques are used to clone animals, its efficiency is very low. Moreover, nuclear transfer has resulted in offspring with severe developmental problems, probably due to incomplete nuclear reprogramming. Nuclear reprogramming is characterized by functional modification of the transferred nucleus to allow it to direct normal embryo development with the potential to grow to term. Although the nature of the reprogramming factor(s) in mammals is not clear, various nuclear as well as cytoplasmic components are involved in the processes. In this article we review recent data on factors involved in the nuclear reprogramming of cloned embryos.
Induced pluripotent stem cells (iPSCs) show great promise for replacing current stem cell therapies in the field of regenerative medicine. However, the original method for cellular reprogramming, involving four exogenous transcription factors, is characterized by low efficiency. Here, we focused on using epigenetic modifications to enhance the reprogramming efficiency. We hypothesized that there would be a new reprogramming factor involved in DNA demethylation, acting on the promoters of pluripotency-related genes. We screened proteins that bind to the methylated promoter of Oct4 and identified Zinc finger protein 127 (Zfp127), the functions of which have not yet been identified. We found that Zfp127 binds to the Oct4 promoter. Overexpression of Zfp127 in fibroblasts induced demethylation of the Oct4 promoter, thus enhancing Oct4 promoter activity and gene expression. These results demonstrate that Zfp127 is a novel regulator of Oct4, and may become a potent target to improve cellular reprogramming.
Somatic cell nuclear transfer (SCNT) is a useful tool for reproducing genetically identical animals or producing transgenic animals. Many reports have demonstrated that the efficiency of animal cloning by SCNT requires reprogramming of the somatic nucleus to a totipotent like-state. The SCNT-related reprogramming might mimic the natural reprogramming process that occurs during normal mammalian development. However, recent evidence indicates that the reprogramming event by SCNT is incomplete. In this study, the traditional SCNT procedure (TNT) was modified by injecting donor nuclei into recipient cytoplasm prior to the enucleation process to expose the donor nucleus before removing the karyoplast containing the chromosomes of the oocytes which might possess additional reprogramming factors, and this modified technique was named as reversing the usual order of SCNT (RONT). Other procedures including activation and in vitro culture were the same as TNT. Contrary to expectations, the rate of blastocyst development was not different significantly between RONT and TNT (8.6% and 7.9%, respectively). However, duration of micromanipulation performed by the same technician and equipments was remarkably reduced because the ruptured oocytes after nuclear injection were excluded from the enucleation process. This study suggests that RONT, a simplified SCNT protocol, shortens the duration of SCNT procedure and this less time-costing protocol may enable the researchers to perform murine SCNT easier.
Recently induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of several transcription factors (reprogramming factors) using technology of somatic cell reprogramming. iPS cells are able to selfrenew and differentiate into all type of cells in the body similarly to embryonic stem cells. Because iPS cells have advantages that can avoid immune rejection after transplantation and ethical issues unlike embryonic stem cells, research on iPS has made significant progress since the first report by Yamanaka in 2006. Nevertheless of many advantages of iPS, safer methods to introduce reprogramming factors into somatic cells must be developed due to safety concerns regarding viral vectors, and safer reprogramming factors to substitute the oncogenes should be evaluated for clinical application of iPS. Here we discuss the recent progress in reprogramming factors in embryonic stem cells, oocytes, and embryos, and discuss further research for finding new, more reliable and safer reprogramming factors.
Successful somatic cell nuclear transfer (SCNT) has been reported across a range of species using a range of recipient cells including enucleated metaphase II (MII) arrested oocytes, enucleated activated MII oocytes, and mitotic zygotes. However, the frequency of development to term varies significantly, not only between different cytoplast recipients but also within what is thought to be a homogenous population of cytoplasts. One of the major differences between cytoplasts is the activities of the cell cycle regulated protein kinases, maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK). Dependent upon their activity, exposure of the donor nucleus to these kinases can have both positive and negative effects on subsequent development. Co-ordination of cell cycle stage of the donor nucleus with the activities of MPF and MAPK in the cytoplast is essential to avoid DNA damage and maintain correct ploidy. However, recent information suggests that these kinases may also effect reprogramming of the somatic nucleus and preimplantation embryo development by other mechanisms. This article will summarise the differences between cytoplast recipients, their effects on development and discuss the potential role/s of MPF and or MAPK in nuclear reprogramming.
Sang Hui Yong;Sang-Mi Kim;Gyeong Woon Kong;Seung Hwan Ko;Eun-Hye Lee;Yohan Oh;Chang-Hwan Park
BMB Reports
/
v.57
no.8
/
pp.363-368
/
2024
Parkinson's disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra, is caused by various genetic and environmental factors. Current treatment methods are medication and surgery; however, a primary therapy has not yet been proposed. In this study, we aimed to develop a new treatment for PD that induces direct reprogramming of dopaminergic neurons (iDAN). Achaete-scute family bHLH transcription factor 1 (ASCL1) is a primary factor that initiates and regulates central nervous system development and induces neurogenesis. In addition, it interacts with BRN2 and MYT1L, which are crucial transcription factors for the direct conversion of fibroblasts into neurons. Overexpression of ASCL1 along with the transcription factors NURR1 and LMX1A can directly reprogram iDANs. Using a retrovirus, GFP-tagged ASCL1 was overexpressed in astrocytes. One week of culture in iDAN convertsion medium reprogrammed the astrocytes into iDANs. After 7 days of differentiation, TH+/TUJ1+ cells emerged. After 2 weeks, the number of mature TH+/TUJ1+ dopaminergic neurons increased. Only ventral midbrain (VM) astrocytes exhibited these results, not cortical astrocytes. Thus, VM astrocytes can undergo direct iDAN reprogramming with ASCL1 alone, in the absence of transcription factors that stimulate dopaminergic neurons development.
Skin-derived precursor cells (SKPs) are multipotent, sphere-forming and embryonic neural crest-related precursor cells that can be isolated from dermis. It is known that the properties of porcine SKPs can be enhanced by leukemia inhibitory factor (LIF) which is an essential factor for the generation of embryonic stem cells in mice. In our present study, to enhance or maintain the properties of murine SKPs, LIF was added to the culture medium. SKPs were treated with 1,000 IU LIF for 72 hours after passage 3. Quantitative real time RT-PCR was then performed to quantify the expression of the pluripotent stem cell specific genes Oct4, Nanog, Klf4 and c-Myc, and the neural crest specific genes Snai2 and Ngfr. The results show that the expression of Oct4 is increased in murine SKPs by LIF treatment whereas the level of Ngfr is decreased under these conditions. Interestingly, LIF treatment reduced Nanog expression which is also important for cell proliferation in adult stem cells and for osteogenic induction in mesenchymal stem cells. These findings implicate LIF in the maintenance of stemness in SKPs through the suppression of lineage differentiation and in part through the control of cell proliferation.
Differential capacity of the parthenogenetic embryonic stem cells (PESCs) is still under controversy and the mechanisms of its neural induction are yet poorly understood. Here we demonstrated neural lineage induction of PESCs by addition of insulin-like growth factor-2 (Igf2), which is an important factor for embryo organ development and a paternally expressed imprinting gene. Murine PESCs were aggregated to embryoid bodies (EBs) by suspension culture under the leukemia inhibitory factor-free condition for 4 days. To test the effect of exogenous Igf2, 30 ng/ml of Igf2 was supplemented to EBs induction medium. Then neural induction was carried out with serum-free medium containing insulin, transferrin, selenium, and fibronectin complex (ITSFn) for 12 days. Normal murine embryonic stem cells derived from fertilized embryos (ESCs) were used as the control group. Neural potential of differentiated PESCs and ESCs were analyzed by immunofluorescent labeling and real-time PCR assay (Nestin, neural progenitor marker; Tuj1, neuronal cell marker; GFAP, glial cell marker). The differentiated cells from both ESC and PESC showed heterogeneous population of Nestin, Tuj1, and GFAP positive cells. In terms of the level of gene expression, PESC showed 4 times higher level of GFAP expression than ESCs. After exposure to Igf2, the expression level of GFAP decreased both in derivatives of PESCs and ESCs. Interestingly, the expression level of $Tuj1$ increased only in ESCs, not in PESCs. The results show that IGF2 is a positive effector for suppressing over-expressed glial differentiation during neural induction of PESCs and for promoting neuronal differentiation of ESCs, while exogenous Igf2 could not accelerate the neuronal differentiation of PESCs. Although exogenous Igf2 promotes neuronal differentiation of normal ESCs, expression of endogenous $Igf2$ may be critical for initiating neuronal differentiation of pluripotent stem cells. The findings may contribute to understanding of the relationship between imprinting mechanism and neural differentiation and its application to neural tissue repair in the future.
Park, Joo-Hee;Choi, Yong-Lak;Kwon, Dae-Jin;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
Reproductive and Developmental Biology
/
v.33
no.4
/
pp.223-228
/
2009
We attempted to control the maturation promoting factor (MPF) activity and investigated the subsequent reprogramming of bovine somatic cell nuclear transfer (SCNT) embryos. Serum-starved adult skin fibroblasts were fused to enucleated oocytes treated with 2.5 mM caffeine or $150\;{\mu}M$ roscovitine. The MPF activity, nuclear remodeling patterns, chromosome constitutions and development of SCNT embryos were evaluated. Methylated DNA of embryos was detected at various developmental stages. The MPF activity was increased by caffeine treatment or reduced by roscovitine treatment (p<0.05). Blastocyst development was higher in the caffeine-treated groups (27.6%) than that of the roscovitine-treated group (8.3%, p<0.05). There was no difference in the apoptotic cell index among the three groups. However, the mean cell number of blastocysts was increased in the caffeine-treated group (p<0.05). Higher methylation levels were observed in the Day 3 embryos of the roscovitine-treated group (50.8%), whereas lower methylation levels were noted at Day 5 in the caffeine-treated group (12.5%, p<0.05). These results reveal that the increase in MPF activity via a caffeine-treatment creates a more suitable condition for nuclear reprogramming after SCNT.
The low efficiency of animal production by nuclear transfer technique is considered to be result of an incomplete reprogramming of the donor cell nucleus, which leads to a lack of, or abnormal expression of developmentally important genes. There are a lot of genes related to embryo development and some of these genes are regulated by imprinting. IGF2 (insulin like growth factor 2) and IGF2R (IGF2 receptor) that play important roles in preimplantation development are included in imprinted genes also. (omitted)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.