• Title/Summary/Keyword: Reproductive activity

Search Result 454, Processing Time 0.018 seconds

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

hCG-induced Endoplasmic Reticulum Stress Leads to Activation of the IRE1/XBP1 Pathway in Mouse Leydig Tumor Cells (mLTC-1) (mLTC-1 세포에 hCG 처리에 의해 유도된 소포체 스트레스가 IRE1/XBP1 경로의 활성화 유발)

  • Park, Sun-Ji;Kim, Tae-Shin;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1039-1045
    • /
    • 2014
  • This study analyzed whether human chorionic gonadotropin (hCG) induces ER stress via the IRE/XBP1 pathway in mouse Leydig tumor (mLTC-1) cells. In a previous study, we demonstrated that the unfolding protein response (UPR) plays an important role in the expression of steroidogenic enzymes by modulating the ATF6 pathway, as well as ER stress-mediated apoptosis in hCG-stimulated Leydig cells. Although UPR signaling has been reported to regulate the IRE1/XBP1 pathway, it is not known whether hCG-induced ER stress in Leydig cells can activate the pathway. To investigate the activation of the IRE1/XBP1 pathway in mLTC-1 cells after hCG treatment, we performed a Western blot analysis to detect the phospho-IRE1 protein and an RT-PCR analysis to validate splicing of XBP1 mRNA. We used ER stress-activated indicator (ERAI) constructs for monitoring the activity of IRE1 and then analyzed by fluorescence microscopy and flow cytometry. The expression levels of the phospho-IRE1 protein markedly increased in response to the hCG treatment. In the mLTC-1 cells transfected with an F-XBP1-venus/F-$XBP1{\Delta}DBD$-venus construct, the hCG treatment led to the appearance of green fluorescent cells and detectable fluorescence in the nucleus and cytosol, respectively. In addition, splicing of XBP1 mRNA significantly increased after the hCG treatment. Taken together, these results indicate that hCG-induced ER stress leads to activation of the IRE1/XBP pathway in Leydig cells.

Tolerance of Rice, Soybean, and Hot Pepper to Simulated Acid Rain at Different Growth Stages (벼, 콩, 고추의 생육시간별 인공 산성비에 대한 내성)

  • 이석순;김태주;김복진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.6
    • /
    • pp.548-555
    • /
    • 1994
  • To compare the tolerance of crops to acid rain at different growth stages a simulated acid rain (SAR) of pH 2.7 was applied to rice, soybean, and hot pepper from vegetative growth stage to harvest (Veget.-Harvest) and from reproductive growth stage to harvest (Reprod.-Harvest). Visual damages of crops by SAR were greater in the order of rice < hot pepper < soybean and greater at Veget.-Harvest than at Reprod.-Harvest treatment. Chlorophyll content of all crops was greater in the order of Veget.-Harvest < Reprod.-Harvest treatment < control, but photosynthetic activity was not affected by SAR treatments. Nitrogen concentration and uptake of rice plants at harvest were similar among SAR treatments, but those of soybean and hot pepper were greater at Veget.-Harvest treatment than at Reprod.-Harvest treatment or control. Sulfur concentration of all crops was not affected by SAR treatments, but total sulfur uptake of soybean was greater in SAR treatments than untreated control. Grain yield of rice and soybean was not affected by SAR although grain fertility, percent ripened grains, and 1,000-grain weight of rice at Veget.-Harvest treatment were lower compared with Reprod.-Harvest treatment or control. Fruit dry weight of hot pepper was greater in the order of Veget.-Harvest < Reprod.-Harvest < control due to decreased fruit number per plant and average fruit weight. At one time application of SAR at flowering stage, brown spots were observed on the spikelets of rice at below pH 2.3. Petals of soybean and hot pepper were wilted at pH below 1. 7 and 2.0, respectively, but fruit setting was not affected by the pH of the SRA.

  • PDF

Simultaneous Determination of 8 Preservatives (6 Parabens, 2-Phenoxyethanol, and Chlorphenesin) in Cosmetics by $UPLC^{TM}$ ($UPLC^{TM}$를 이용한 화장품 중 보존제 8종(파라벤 6종, 페녹시에탄올, 클로페네신)의 동시분석)

  • Park, Jeong-Eun;Lee, So-Mi;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-267
    • /
    • 2007
  • Parabens are used in nearly all types of cosmetics and toiletries because they are formulated well and have broad spectrum of activity, interness, low costs and excellent chemical stability in relation to pH. 2-phenoxyethanol and chlorphenesin are common preservatives which are usually used in combination with parabens in cosmetics. Toxicity of parabens is generally low but application of parabens to damaged or broken skin has resulted in sensitization. Moreover, the possibility of their estrogenic potential, anesthetic effects and reproductive toxicity has been reported. Consequently there are some regulations in use of parabens. And the maximum permitted concentrations of chlorphenesin and 2-phenoxyethanol in cosmetic products are authorized by the same reasons. So it is important to control and estimate the amount of parabens in products. In this article, we proposed a valid method for the simultaneous determination of 8 preservatives including parabens in a short time using ultra performance liquid $chromatography^{TM}\;(UPLC^{TM})$. Separation of eight components was achieved in less than 10 min and resolutions were reasonable (USP resolution ${\geqq}\;2$). And limit of detection and quantification were evaluated. The method was suitably validated for specificity, linearity, precision (repeatability, intermediate precision) and accuracy for assay (recovery) based on International conference on harmonisation (ICH) guideline. The method was applicable to analysis of preservatives in cosmetic products.