• Title/Summary/Keyword: Reproductive Toxicity

Search Result 243, Processing Time 0.024 seconds

Toxic effects of antifouling agents (diuron and irgarol) on fertilization and normal embryogenesis rates in the sea urchin (Mesocentrotus nudus) (둥근성게(Mesocentrotus nudus)의 수정 및 배아 발생률에 미치는 신방오도료(Diuron, Irgarol)의 독성영향)

  • Hwang, Un-Ki;Lee, Ju-Wook;Park, Yun-Ho;Heo, Seung;Choi, Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • Toxic assessment of antifouling agents (diuron and irgarol) was conducted using the fertilization and the normal embryogenesis rates of the sea urchin, Mesocentrotus nudus. Bioassessment began with male and female reproductive cell induction. White or cream-colored male gametes(sperm) and yellow or orange-colored female gametes (eggs) were acquired and fully washed, separately. Then, the fertilization and normal embryogenesis rates were measured after 10 min and 48 h of exposure to the toxicants, respectively. The fertilization and embryo development rates were greater than 90% in the control, validating the suitability of both endpoints. The normal embryogenesis rates were significantly decreased with increasing concentrations of diuron and irgarol, but no changes in the fertilization rates were observed in concentrations ranging from 0 to 40 mg L-1. The EC50 values of diuron and irgarol for the normal embryogenesis rates were 20.07 mg L-1 and 22.45 mg L-1, respectively. The no observed effect concentrations (NOEC) were <1.25 mg L-1 and the lowest observed effect concentrations (LOEC) were 1.25 mg L-1 and 2.5 mg L-1, respectively. From these results, concentrations of diuron and irgarol over 1.25 mg L-1 and 2.5 mg L-1, respectively, can be considered to have toxic effects on invertebrates, including M. nudus. The ecotoxicological bioassay in this study using the noted fertilization and normal embryogenesis rates of M. nudus can be used as baseline data for the continued establishment of environmental quality standards for the effects of antifouling agents(especially diuron and irgarol) in a marine environment.

Effects of zearalenone on the localization and expression of the growth hormone receptor gene in the uteri of post-weaning piglets

  • Zhou, Min;Yang, Li Jie;Yang, Wei Ren;Huang, Li Bo;Zhou, Xue Mei;Jiang, Shu Zhen;Yang, Zai Bin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Objective: In this study, we investigated the adverse effects of dietary zearalenone (ZEA) (0.5 to 1.5 mg/kg diet) on the localization and expression of the growth hormone receptor (GHR) in the uteri of post-weaning gilts and explored alternative mechanism of the reproductive toxicity of ZEA on piglets. Methods: A total of forty healthy piglets (Duroc${\times}$Landrace${\times}$Large White) aged 28 d were selected for study. Piglets were transferred to single cages after 10 days' adaptation on an obstetric table. The animals were allocated to one of four treatments: a normal basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0), or 1.5 (ZEA1.5) mg/kg purified ZEA, and fed for 35 d after the 10-d adaptation. Analyzed ZEA concentrations in the diets were 0, $0.52{\pm}0.07$, $1.04{\pm}0.03$, and $1.51{\pm}0.13mg/kg$, respectively. At the end of the feeding trial, piglets were euthanized after being fasted for 12 h. Two samples of uterine tissue from each pig were rapidly collected, one of which was stored at $-80^{\circ}C$ for analysis of the relative mRNA and protein expression of GHR, and the second was promptly fixed in Bouin's solution for immunohistochemical analysis. Results: The relative weight of the uteri and thickness of the myometrium and endometrium increased linearly (p<0.001) and quadratically (p<0.001) with an increasing level of ZEA. The results of immunohistochemical analysis indicated that GHR immunoreactive substance was mainly localizated in the cytoplasm of uterine smooth muscle, glandular epithelial, luminal epithelial, stromal, and vascular endothelial cells. In contrast, nuclear staining was rarely observed. The immunoreactive integrated optic density of GHR in the myometrium, luminal epithelium, glandular epithelium, and whole uteri of weaning gilts increased linearly (p<0.001) and quadratically (p<0.05) with an increasing level of ZEA. The mRNA and protein expression of GHR in the uteri of weaning gilts increased linearly (p<0.001) and quadratically (p<0.05) with an increasing level of ZEA. Conclusion: In conclusion, ZEA at a concentration of 0.5 mg/kg was sufficient to significantly thicken the myometrium and endometrium, and at a concentration of 1.0 mg/kg induced a high level of GHR expression to promote growth and development of the uteri. This revealed an alternative molecular mechanism whereby ZEA induces growth and development of the uteri and provides a theoretical basis for the revision of Chinese feed hygiene standards.

Influence of NO3-:NH4+ Ratios in Fertilizer Solution on Growth and Yield of Hot Pepper (Capsicum annuum L.) in Pot Cultivation (배지경 포트재배에서 비료용액의 NO3-:NH4+ 비율이 고추의 생장 및 수량에 미치는 영향)

  • Yi, Ho Jin;Choi, Jong Myung;Jang, Sung Wan;Jung, Suk Ki
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • This research was conducted to evaluate the influence of $NO_3{^-}:NH_4{^+}$ ratios in fertilizer solution on the vegetative growth and fruit yield of hot pepper (Capsicum annuum L.) through pot cultivation. The Hoaglad's solution was modified to contain various $NO_3{^-}:NH_4{^+}$ ratios such as 100:0 (A), 73:37 (B), 50:50 (C), 27:73 (D), 0:100 (E), and no nitrogen (F). Plants were transplanted into root substrates and the modified solutions were applied as plant needed in plastic house. There were no statistical significances among the treatments from A through D in the fresh and dry weights, and number of leaves 31 days after transplanting, but elevation of $NH_4{^+}$ ratios in the solution decreased the fresh fruit weight 62 days after transplanting with statistical differences. In the results of inorganic element analysis based on the dry weight of fully expanded mature leaves, N and P contents as well as micro cations such as Fe, Mn, Zn, and Cu increased as $NH_4{^+}$ ratios were elevated 62 days after transplanting. However, those of macro cations such as K, Ca, and Mg resulted in decreasing tendency. The elevation of $NH_4{^+}$ ratios in fertilizer solution resulted in the increase of EC and total N concentrations ($NO_3{^-}+NH_4{^+}$), but this decreased the pH as well as Ca and Mg concentrations in soil solution 62 days after transplanting. The K concentration in soil solution was the highest in the treatments of C and followed by D, B, E, and A. The above results indicate that the proper $NO_3{^-}:NH_4{^+}$ ratio in the nutrient solution is 73:27 (B) or 100:0 (A) and the B solution is proper for the vegetative growth and that of A is proper for reproductive growth stage.