• Title/Summary/Keyword: Reproducible quench

Search Result 2, Processing Time 0.017 seconds

Stabilized Operating Conditions of Superconducting Fault Current Limiter using YBCO Thin Film (YBCO 박막을 이용한 초전도 한류기의 안정적인 동작조건)

  • Choe, Hyo-Sang;Kim, Hye-Rim;Hyeon, Ok-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.584-589
    • /
    • 2000
  • We fabricated resistive superconducting fault current limiters (SFCL) based on YBCO thin films grown on a 2-inch diameter Al2O3 substrate. The current limiting element was 1 mm wide and 260mm long meander line prepared by standard photolithography. The minimum quench current of the current limiting element was about 8 Apeak. This SFCL sucessfully controlled the fault current below 14.3 Apeak at the voltage of 100 Apeak which is otherwise to increase up to 141 Apeak. The quench completion time was less than 3 msec. The temperature of the current limiting element rose to about 200 K in 3 cycles after fault. The SFCL showed reproducible quench during hundreds times of repeated experiments.

  • PDF

Stabilized operating condition of resistive superconducting fault current limiter using YBCO film (YBCO film을 이용한 저항형 한류기의 안정적인 동작 조건)

  • 최효상;현옥배;김혜림;황시돌;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.133-135
    • /
    • 2000
  • We fabricated resistive super- conducting fault current limiters (SFCL) based on YBCO thin films grown on a 2" diameter $Al_{2}$O_{3} substrate. The minimum quench current of the current minimum quench current of the current limiting element was about 8 $A_{peak}. This SFCL successfully controlled the fault current below 14.3 $A_{peak} at the voltage of 100$V_{rms}, which is otherwise to increase up to 141$A_{peak}. and the quench completion time is less than 3 msec. The temperature of the current limiting element rose to about 200K in 3 cycles after fault. The SFCL showed reproducible characteristics during hundreds times of repeated experiments.ents.

  • PDF