• 제목/요약/키워드: Replacement Ratio

검색결과 1,410건 처리시간 0.025초

국내.외산 메타카올린을 사용한 고강도 콘크리트의 내구특성에 관한 실험적 연구 (An Experimental Study on the Properties of Durability of High Strength Concrete Using Domestic.Foreign Meta-kaolin)

  • 이강필;이승민;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.239-242
    • /
    • 2009
  • As the high-rise building increase due to the gravitation of population to big cities recently, it requires high quality and high performance of Concrete. As a result, people are keenly interested in Meta-kaolin as new admixture favorable from an economic perspective, which has strength and endurance with admixture at the same level like Silica-fume. Accordingly, as to Meta-kaolin, this study was to set by three levels like domestic one, foreign one, and Silica-fume, the water-binding material ratio 25%, and four level substitute like 0, 10, 20, and 30(%) in order to compare and analyze the quality durability of high-concrete according to the substitute of Meta-kaolin applicable with replacement of Silica-fume. As a result of performing experiment it was found that when water-binding material ratio increases, resistance of neutralization, carbonation, salt damage and sulfate decrease, and when replacement ratio of mineral admixture increases, depth of accelerating carbonation gets greater. Also, the combination of SF and MK-B favored resistance to chloride ion penetration better than MK-A, and it was found that when replacement ratio of binding material increases, the resistance to sulphuric acid increases. Therefore, based on this study, it was understood that meta-kaolin is useable in replacement of silicafume.

  • PDF

소각장애시의 치환률 변화에 따른 순환골재 미분말 함유 고로슬래그 다량치환 모르타르의 기초적 특성 (Effect of Incineration Plant Ash on Fundamental Properties of High Volume Blast Furnace-Slag Mortar incorporating Recycled Aggregate Powder)

  • 황금광;박재용;정상운;허영선;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.126-127
    • /
    • 2013
  • For the decades, various of materials were used to instead of cement as the high volume CO2 occurred during the process of cement manufacture. In this paper, incineration plant ash was used in the mortar which incorporating high volume of blast furnace slag. Water to binder ratio(W/B) is fixed as 50%,BS+RP's replacement ratio is fixed as 80%,and the replacement ratio of WA1 is range as 0,0.5,1,2,3,4,5%.For the fresh mortar, flow and chloride contents has been tested. For the hardened mortar, compressive strength at 3,7,28 days has been tested. the result shows that when the replacement ratio of WA1 is 0.5%,the chloride contents is less than 0,3 kg/m3,the flowability and strength also performed better than other replacement types of mortar.

  • PDF

섬유보강 다공성 옥상녹화 황토콘크리트의 물리·역학적 및 온도변화 특성 평가 (Physical·Mechanical and Temperature Properties of Fiber Reinforced Porous Green Roof Hwang-toh Concrete)

  • 오리온;김춘수;김황희;전지홍;권완식;박찬기
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.65-72
    • /
    • 2013
  • The physical, mechanical, water purification and temperature properties of fiber reinforced porous hwang-toh green roof concrete have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio is varied to 0 % and 30 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH test, unit weight, void ratio, compressive strength, after purification and variation of temperature test have been performed to evaluate the performance, water purification effect and temperature properties of the fiber reinforced porous hwang-toh green roof concrete. The test results indicate that the physical and mechanical properties of fiber reinforced porous hwang-toh green roof concrete is affected by the replacement ratio of the blast furnace slag and hwang-toh contents. Results of purifying water showed that the water purification effect of porous hwang-toh green roof concrete is about 40 %. Also, the temperature properties test results indicate the green roof blocks using fiber reinforced porous hwang-toh green roof concrete have insulation and temperature reduction effect.

실내시험을 이용한 저치환 보강지반의 평가 (Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests)

  • 배우석
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

수치해석적 방법에 의한 저회혼합다짐말뚝의 침하저감비에 관한 연구 (Numerical Study of Settlement Reduction Ratio for the Bottom Ash Mixture Compaction Pile)

  • 주익찬;김구영;도종남;조현수;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제13권3호
    • /
    • pp.53-58
    • /
    • 2012
  • 일반적으로 연약지반인 점성토 지반이나 느슨한 사질토 지반을 개량하기 위하여 모래다짐말뚝(SCP)공법 또는 쇄석다짐말뚝(GCP)공법이 쓰여지고 있다. 하지만 모래다짐공법은 모래의 수급부족과 모래채취로 인한 환경파괴와 같은 문제점이 있으며, 쇄석다짐공법은 쇄석다짐재료의 클로깅으로 인하여 배수재의 투수계수가 저하되는 문제점이 있다. 최근, 모래와 공학적 성질이 유사한 화력발전소 부산물인 저회를 모래의 대체 재료로 활용하기 위한 연구가 이루어지고 있다. 본 연구에서는 저회혼합다짐말뚝에 대한 기초적 연구로써 조립재료 및 치환율에 따른 조립재료 혼합다짐말뚝의 거동특성을 수치해석적으로 규명하였다. 특히, 말뚝중심부로부터 거리에 따른 침하저감비(SRR)를 산정하였다. 연구 결과는 다음과 같았다. 조립재료에 따른 혼합다짐말뚝의 침하저감비 변화값은 유사한 형태를 보였으며 치환율에 따라 복합지반의 강성이 증대하여 침하저감비는 감소하는 형태를 보였다. 특히, 치환율 20~40%의 범위에서는 일반적으로 침하저감비의 증가가 큰 것으로 나타났고, 치환율 40% 이상에서는 증가치가 서서히 감소하는것으로 나타났다. 본 연구에서 적용한 연약지반과 유사한 지반에 혼합다짐말뚝 적용 시 경제성을 고려하였을 때, 30~40%의 치환율이 적절할 것으로 사료된다.

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

연약지반에서 저회혼합다짐말뚝의 적정 혼합비 및 치환율 산정에 관한 연구 (The Study of Appropriate Mixture Ratio and Replacement Ratio of Bottom Ash Mixture Compaction Pile in Soft Ground)

  • 도종남;주익찬;채휘영;천병식
    • 대한토목학회논문집
    • /
    • 제32권4C호
    • /
    • pp.139-147
    • /
    • 2012
  • 본 연구에서는 모래의 수급 문제와 회처리장 부족으로 전력생산 위기에 처해진 화력발전소의 문제점을 해결하며, 쇄석다짐말뚝의 폐색 현상에 대처하기 위한 방안으로 모래와 공학적 성질이 유사한 화력발전소 부산물인 저회를 조립재료다짐말뚝 재료로 활용하기 위하여 다양한 공학적 시험을 실시하였다. 특히 연약지반에 쇄석다짐말뚝의 클로깅 현상을 줄이고 말뚝 내 공극을 감소시키기 위한 연구가 수행되었다. 각 재료의 배합비별 전단강도 시험을 통해 적정혼합비를 산정하고 연약지반에 적용 시 효율적인 치환율을 공학적 시험으로 도출하였다. 다짐 시험 및 대형직접전단 시험결과, 쇄석:저회 혼합비 80:20의 전단강도가 가장 크므로 쇄석과 저회 혼합다짐말뚝의 최적 혼합비로 결정하였다. 저회의 혼합비가 20% 이상의 영역에서는 혼합재료의 입자간 맞물림 효과 감소에 의한 내부마찰각 저하가 발생하였다. 동결융해법에 의한 모형시험 방법을 개발하여 압축시험을 수행한 결과, 저회혼합다짐말뚝의 치환율이 40% 이상일 경우 그 영향이 크게 증가하지 않았다. 따라서 저회혼합다짐말뚝을 연약지반에 시공 시 경제적인 치환율은 40%로 판단된다.

폐타이어 분말의 치환율과 입자크기에 따른 경량 모르타르의 역학적 특성 (Mechanical Properties of Lightweight Mortar in Accordance with the Particle Size and Replacement Ratio of the Wasted Tire Chip)

  • 양훈;이용;이상수
    • 한국건설순환자원학회논문집
    • /
    • 제3권4호
    • /
    • pp.342-347
    • /
    • 2015
  • 본 연구는 최근 산업 발전으로 나날이 증가하는 폐타이어가 야기시키는 환경오염을 해결하고 폐타이어를 재활용함으로써 무분별한 매립을 예방하기 위한 기초 실험이다. 건축 재료의 경량골재를 폐타이어분말로 대체함으로써 폐타이어분말의 경량성을 검토하고 폐타이어분말의 재활용 계획을 제시하고 적용하고자 한다. 선행실험으로 폐타이어분말을 20, 40, 60, 80, 100(%) 등으로 치환하여 실행하였고, 측정 항목은 강도와 밀도이다. 본 실험은 선행실험을 기초로 하여 폐타이어 치환율을 15, 20, 25(%) 등으로 하였다. 폐타이어 골재의 입도는 0.2, 0.8, 1~2, 3~5, 5~7(mm) 등으로 고정하였다. 실험 결과 폐타이어 입도 1~2mm, 치환율 15%가 가장 적정한 입자크기 및 치환율 값을 나타내었다.

Axial compressive behavior of partially encased recycled aggregate concrete stub columns after exposure to high temperatures

  • Jiongfeng Liang;Wanjie Zou;Liuhaoxiang Wang;Wei Li
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.121-134
    • /
    • 2024
  • To investigate the compressive behavior of partially encased recycled aggregate concrete (PERAC) stub columns after exposed to elevated temperatures, 22 specimens were tested. The maximum temperature suffered, the replacement ratio of recycled coarse aggregate (RCA), the endurance time and the spacing between links were considered as the main parameters. It was found that the failure mode of post-heated PERAC columns generally matched that of traditional partially encased composite (PEC) columns, but the flange of specimens appeared premature buckling after undergoing the temperature of 400℃ and above. Additionally, the ultimate strength and ductility of the specimens deteriorated with the elevated temperatures and extended heating time. When 400℃< T ≤ 600℃, the strength reduction range is the largest, about 11% ~ 17%. The higher the replacement ratio of RCA, the lower the ultimate strength of specimens. At the temperature of 600℃, the ultimate strength of specimens with the RCA replacement ratio of 50% and 100% is 0.94 and 0.91 times than that of specimens without RCA, respectively. But the specimen with 50% replacement ratio of RCA showed the best ductility performance. And the bearing capacity and ductility of PERAC stub columns were changed for the better due to the application of links. When the RCA replacement ratio is 100%, the ultimate strength of specimens with the link spacing of 100 mm and 50 mm increased 14% and 25% than that of the specimen without links, respectively. Based on the results above, a formula for calculating the ultimate strength of PERAC stub columns after exposure to high temperatures was proposed.

Utilization of Pyrolysis Oil from Pine Wood as Thermosetting Wood Adhesive Resins

  • Kim, Jae-Woo;Myers, Deland J.;Brown, Robert C.;Kuo, Monlin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, the possibility of using pyrolysis oil as wood adhesives was explored. Especially, adhesives were formulated by reacting pyrolysis oil and formaldehyde and also partially replacing phenol with pyrolysis oil in phenol-formaldehyde (PF) adhesive and soy hydrolizate/PF adhesive formulation. The pine wood was fast pyrolyized and the oils were obtained from a series of condensers in the pyrolysis system. The oils from each condenser were first reacted with formaldehyde to explore potential use of the oil itself as adhesive. The lap-shear bond strength test results indicated that the oil itself could be polymerized and form bonds between wood adherends. The oils from each condenser were then mixed together and used as partial replacement of phenol (25, 33, and 50% by weight) in phenol-formaldehyde adhesive. The bond strength of the oil containing PF adhesives was decreased as percent phenol replacement level increased. However, no significant difference was found between 25 and 33% of phenol replacement level. The oil-contained PF resins at 25, 33, and 50% phenol replacement level with different NaOH/Phenol (Pyrolysis oil) molar ratio were further formulated with soy hydrolizate to make soy hydrolizate/pyrolysis oil-phenol formaldehyde adhesive at 6:4 weight (wt) ratio and used for fiberboard manufacturing. Surface internal bond strength (IB) of the boards bonded with 33% replacement at 0.3 NaOH/Phenol (Pyrolysis oil) molar ratio performed better than other replacement levels and molar ratios. Thickness swelling after 24 hr cold water soaking and after 2 hr in boiling water was increased as % replacement of pyrolysis oil increased.