• Title/Summary/Keyword: Reperfusion Injury for Renal IRI

Search Result 6, Processing Time 0.023 seconds

Therapeutic Effect of Three-Dimensional Cultured Adipose-Derived Stem Cell-Conditioned Medium in Renal Ischemia-Reperfusion Injury

  • Yu Seon Kim;Joomin Aum;Bo Hyun Kim;Myoung Jin Jang;Jungyo Suh;Nayoung Suh;Dalsan You
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.168-179
    • /
    • 2023
  • Background and Objectives: We evaluated the effect of adipose-derived stem cell-derived conditioned medium (ADSC-CM) on the renal function of rats with renal ischemia-reperfusion injury (IRI)-induced acute kidney injury. Methods and Results: Forty male Sprague-Dawley rats were randomly divided into four groups: sham, nephrectomy control, IRI control, ADSC-CM. The ADSC-CM was prepared using the three-dimensional spheroid culture system and injected into renal parenchyme. The renal function of the rats was evaluated 28 days before and 1, 2, 3, 4, 7, and 14 days after surgical procedures. The rats were sacrificed 14 days after surgical procedures, and kidney tissues were collected for histological examination. The renal parenchymal injection of ADSC-CM significantly reduced the serum blood urea nitrogen and creatinine levels compared with the IRI control group on days 1, 2, 3, and 4 after IRI. The renal parenchymal injection of ADSC-CM significantly increased the level of creatinine clearance compared with the IRI control group 1 day after IRI. Collagen content was significantly lower in the ADSC-CM group than in the IRI control group in the cortex and medulla. Apoptosis was significantly decreased, and proliferation was significantly increased in the ADSC-CM group compared to the IRI control group in the cortex and medulla. The expressions of anti-oxidative makers were higher in the ADSC-CM group than in the IRI control group in the cortex and medulla. Conclusions: The renal function was effectively rescued through the renal parenchymal injection of ADSC-CM prepared using a three-dimensional spheroid culture system.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

  • Ren, Kaixi;Jin, Chao;Ma, Pengfei;Ren, Qinyou;Jia, Zhansheng;Zhu, Daocheng
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Background: Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10-100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with $CD11b^+$, $iNOS^+$/interleukin-12/tumor necrosis factor-${\alpha}$ labeling. For the in vitro study, GSRd ($10-100{\mu}g/mL$) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results: In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin-eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-${\alpha}$. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion: These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization.

Fimasartan attenuates renal ischemia-reperfusion injury by modulating inflammation-related apoptosis

  • Cho, Jang-Hee;Choi, Soon-Youn;Ryu, Hye-Myung;Oh, Eun-Joo;Yook, Ju-Min;Ahn, Ji-Sun;Jung, Hee-Yeon;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Lim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.661-670
    • /
    • 2018
  • Fimasartan, a new angiotensin II receptor antagonist, reduces myocyte damage and stabilizes atherosclerotic plaque through its anti-inflammatory effect in animal studies. We investigated the protective effects of pretreatment with fimasartan on ischemia-reperfusion injury (IRI) in a mouse model of ischemic renal damage. C57BL/6 mice were pretreated with or without 5 (IR-F5) or 10 (IR-F10) mg/kg/day fimasartan for 3 days. Renal ischemia was induced by clamping bilateral renal vascular pedicles for 30 min. Histology, pro-inflammatory cytokines, and apoptosis assays were evaluated 24 h after IRI. Compared to the untreated group, blood urea nitrogen and serum creatinine levels were significantly lower in the IR-F10 group. IR-F10 kidneys showed less tubular necrosis and interstitial fibrosis than untreated kidneys. The expression of F4/80, a macrophage infiltration marker, and tumor necrosis factor $(TNF)-{\alpha}$, decreased in the IR-F10 group. High-dose fimasartan treatment attenuated the upregulation of $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 in ischemic kidneys. Fewer TUNEL positive cells were observed in IR-F10 compared to control mice. Fimasartan caused a significant decrease in caspase-3 activity and the level of Bax, and increased the Bcl-2 level. Fimasartan preserved renal function and tubular architecture from IRI in a mouse ischemic renal injury model. Fimasartan also attenuated upregulation of inflammatory cytokines and decreased apoptosis of renal tubular cells. Our results suggest that fimasartan inhibited the process of tubular injury by preventing apoptosis induced by the inflammatory pathway.

Effect of Jesaeng-sinkihwan on Renal Dysfunction in Ischemia/Reperfusion-Induced Acute Renal Failure Mouse (제생신기환이 허혈-재관류로 유발된 급성 신부전 마우스에 미치는 효과)

  • Han, Byung Hyuk;Lee, Hyeon Kyoung;Jang, Se Hoon;Tai, Ai Lin;Yoon, Jung Joo;Kim, Hye Yoom;Lee, Yun Jung;Lee, Ho Sub;Kang, Dae Gill
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Renal ischemia-reperfusion injury(IRI), an important cause of acute renal failure (ARF), cause increased renal tubular injury. Jesaeng-sinkihwan (JSH) was recorded in a traditional Chines medical book named "Bangyakhappyeon (方藥合編)". JSH has been used for treatment of diabetes and glomerulonephritis with patients. Here we investigate the effects of Jesaeng-sinkihwan (JSH) in a mouse model of ischemic acute kidney injury. The animals model were divided into four groups at the age of 8 weeks; sham group: C57BL6 male mice (n=9), I/R group: C57BL6 male mice with I/R surgery (n=9), JSH Low group: C57BL6 male mice with surgery + JSH 100 mg/kg/day (n=9) and JSH High group: C57BL6 male mice with surgery + JSH 300 mg/kg/day (n=9). Ischemia was induced by clamping the both renal arteries during 25 min, and reperfusion was followed. Mouse were orally given with JSH (100 and 300 mg/kg/day during 3 days after surgery. Treatment with JSH significantly ameliorates creatinine clearance(Ccr), Creatinine (Cr) and blood urea nitrogen(BUN) in obtained plasma. . Treatment with JSH reduced kidney inflammation markers such as Neutrophil Gelatinase Associated Lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). JSH also reduced the periodic acid schiff (PAS) staining intensity and picro sirius red staining intensity in kidney of I/R group. These findings suggest that JSH ameliorates tubular injury including renal dysfunction in I/R induced ARF mouse.

Attenuation of Ischemia-Reperfusion Injury by Antioxidant Vitamins in a Pig Model of Renal Auto-Transplantation (돼지의 신장 자가이식에서 Ascorbic Acid와 Alpha-tocoperol 의한 허혈 및 재관류 손상의 감소)

  • Kim, Myung-Jin;Lee, Jae-Yon;Cho, Sung-Whan;Park, Chang-Sik;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • This study was to determine the effects of ascorbic acid and alpha-tocopherol on the attenuation of an ischemia-reperfusion injury (IRI) after renal auto-transplantation in a pig model. In the treatment group, three pigs were subjected to a renal auto-transplantation followed by the administration of ascorbic acid and alpha-tocopherol and the flushing of ascorbic acid plus hepa-saline solution. Otherwise, the control group used only flushing of hepa-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values on the day before surgery and day 1, 3, 5 and 7 after surgery. The kidneys were taken for histopathological evaluation following euthanasia on day 14 after surgery. Serum creatinine and BUN values showed a significantly difference between control and treatment group on day 1, 3 and 5 (P<0.05). In histopathologic findings, treatment group showed less damage than that of the control group on the basis of renal tubular damage. As a result, this study suggests that the exogenous ascorbic acid and alpha-tocopherol pretreatment therapy with ascorbic acid irrigation-aspiration has a role of attenuation of renal I/R injury and recovery of renal function in a pig transplantation model.