• Title/Summary/Keyword: Reperfusion Injury

Search Result 329, Processing Time 0.026 seconds

A Study on Cerebral Ischemia-Reperfusion Injury: Involvement of Platelet-Activating Factor (뇌의 허혈-재관류손상에 대한 연구: 혈소판활성인자의 관련)

  • Lee, Won-Suk;Rhim, Byung-Yong;Hong, Ki-Whan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • To elucidate involvement of platelet-activating factor (PAF) in cerebral ischemia-reperfusion injury, male Sprague-Dawley rats and albino mice of either sex were subjected to a 10-min bilateral carotid artery occlusion and 6-hr recirculation. The McGraw stroke index in mice was markedly inhibited by PAF antagonists, BN 52021 and CV 6209 (1 mg/kg, i.p., each) When they were administered 10 min before bilateral carotid artery occlusion or 1 hr after reperfusion. The increases in brain water content were significantly attenuated by treatment with BN 52021 or CV 6209 in both animals. BN 52021 exhibited a significant improvement in the postischemic blood pressure change in association with a beneficial effect on the delayed dilatation of pial arterioles after 10 min of ischemia. Thus it is suggested that PAF plays an important role as an endogenous mediator in development of cerebral ischemia-reperfusion injury, and further, specific antagonists to PAF will be able to prevent or reverse the pathological sequelae of cerebral ischemia.

  • PDF

Effect of Thyroid Hormone on the Ischemia-Reperfusion Injury in the Canine Lung (갑상선 호르몬이 잡견 폐장의 허혈-재관류 손상에 미치는 영향)

  • 김영태;성숙환
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.637-647
    • /
    • 1999
  • Background: Ischemia-reperfusion injury is one of the major contributing causes of early graft failure in lung transplantation. It has been suggested that triiodothyronine (T3) may ameliorate ischemia-reperfusion injury to various organs in vivo and in vitro. Predicting its beneficial effect for ischemic lung injury, we set out to demonstrate it by administering T3 into the in situ canine ischemia-reperfusion model. Material and Method: Sixteen adult mongrel dogs were randomly allocated into group A and B. T3 $(3.6\mug/kg)$ was administered before the initiation of single lung ischemia in group B, whereas the same amount of saline was administered in group A. Ischemia was induced in the left lung by clamping the left hilum for 100 minutes. After reperfusion, various hemodynamic parameters and blood gases were analyzed for 4 hours while intermittently clamping the right hilum in order to allow observation of the injured left lung function. Result: Arterial oxygen partial pressure $(PaO_2)$ decreased 30 minutes after reperfusion and recovered gradually thereafter in both groups. In group B the decrease of $PaO_2$ was less marked than in group A. The recovery of $PaO_2$ was faster in group B than in group A. The differences between the two groups were statistically significant from 30 minutes after reperfusion $(125\pm34$ mmHg and $252\pm44$ mmHg, p<0.05) until the end of the experiment $(178\pm42$mmHg and $330\pm37$ mmHg, p<0.05). The differences in the arterial carbon dioxide pressure, airway pressure and lung compliance showed no statistical significance. The malondialdehyde (MDA) level, measured from the tissue obtained 240 minutes after reperfusion, was lower in group B $(0.40\pm0.04\mu$M) than in group A $(0.53\pm0.05\mu$M, p<0.05). The ATP level of group B $(0.69\pm0.07\mu$M/g) was significantly higher than that of group A $(0.48\pm0.07\mu$M/g, p<0.05). The microscopic exami nation revealed varying degrees of injury such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. There were no differences in the microscopic findings between the two groups. CONCLUSION T3 has beneficial effects on the ischemic canine lung injury including preservation of oxygenation capacity, less production of lipid peroxidation products and a higher level of tissue ATP. These results suggest that T3 is effective in pulmonary allograft preservation.

  • PDF

Oxytocin Ameliorates Remote Liver Injury Induced by Renal Ischemia-Reperfusion in Rats

  • Hekimoglu, Askin Tas;Toprak, Gulten;Akkoc, Hasan;Evliyaoglu, Osman;Ozekinci, Selver;Kelle, Ilker
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.169-173
    • /
    • 2013
  • Renal ischemia-reperfusion (IR) causes remote liver damage. Oxytocin has anti-inflammatory and antioxidant effects. The main purpose of this study was to evaluate the protective function of oxytocin (OT) in remote liver damage triggered by renal IR in rats. Twenty four rats were randomly divided into four different groups, each containing 8 rats. The groups were as follows: (1) Sham operated group; (2) Sham operated+OT group (3) Renal IR group; (4) Renal IR+OT group. OT ($500{\mu}g/kg$) was administered subcutaneously 12 and 24 hours before and immediately after ischemia. At the end of experimental procedure, the rats were sacrificed, and liver specimens were taken for histological assessment or determination of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), paraoxonase (PON-1) activity and nitric oxide (NO). The results showed that renal IR injury constituted a notable elevation in MDA, TOS, Oxidative stress index (OSI) and significantly decreased TAS, PON-1 actvity and NO in liver tissue (p<0.05). Additionally renal IR provoked significant augmentation in hepatic microscopic damage scores. However, alterations in these biochemical and histopathological indices due to IR injury were attenuated by OT treatment (p<0.05). These findings show that OT ameliorates remote liver damage triggered by renal ischemia-reperfusion and this preservation involves suppression of inflammation and regulation of oxidant-antioxidant status.

Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

  • Ren, Kaixi;Jin, Chao;Ma, Pengfei;Ren, Qinyou;Jia, Zhansheng;Zhu, Daocheng
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Background: Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10-100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with $CD11b^+$, $iNOS^+$/interleukin-12/tumor necrosis factor-${\alpha}$ labeling. For the in vitro study, GSRd ($10-100{\mu}g/mL$) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results: In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin-eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-${\alpha}$. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion: These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization.

Cardioprotective Effects of Low Dose Bacterial Lipopolysaccharide May Not Be Directly Associated with Prostacyclin Production

  • Moon, Chang-Hyun;Kim, Ji-Young;Lee, Soo-Hwan;Baik, Eun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.331-343
    • /
    • 1998
  • Sublethal dose of bacterial lipopolysaccharide (LPS) would induce protection against cardiac ischemic/reperfusion (I/R) injury. This study examines the following areas: 1) the temporal induction of the cardio-protection produced by LPS; and 2) the relations between a degree of protection and the myocardial prostacyclin ($PGI_2$) production. Rats were administered LPS (2 mg/kg, i.v.), and hearts were removed 1, 4, 8, 14, 24, 48, 72,and 96 h later. Using Langendorff apparatus, haemodynamic differences during 25 min of global ischemia/30 min reperfusion were investigated. The concentration of $PGI_2$ in aliquots of the coronary effluent was determined by radioimmunoassay as its stable hydrolysis product $6-keto-PGF1_{\alpha}$ and lactate dehydrogenase release were measured as an indicative of cellular injury. LPS-induced cardiac protection against I/R injury appeared 4 h after LPS treatment and remained until 96 h after treatment. $PGI_2$ release increased 2-3 fold at the beginning of reperfusion compared to basal level except in hearts treated with LPS for 48 and 72 h. In hearts removed 48 and 72 h after LPS treatment, basal $PGI_2$ was increased. To determine the enzymatic step in relation to LPS-induced basal $PGI_2$ production, we examined prostaglandin H synthase (PGHS) protein expression, a rate limiting enzyme of prostaglandin production, by using Western blot analysis. LPS increased PGHS protein expression in hearts at 24, 48, 72, 96 h after LPS treatment. Induction of PGHS expression appeared in both isotypes of PGHS, a constitutive PGHS-1 and an inducible PGHS-2. To identify the correlationship between $PGI_2$ production and the cardioprotective effect against I/R injury, indomethacin was administered in vivo or in vitro. Indomethacin did not inhibit LPS-induced cardioprotection, which was not affected by the duration of LPS treatment. Taken together, our results suggest that $PGI_2$ might not be the major endogenous mediator of LPS-induced cardioprotection.

  • PDF

Effect of ${\alpha}-Lipoic$ Acid on Expression of pERK1/2 following Ischemia-Reperfusion Injury in the Hindlimb Muscle Flap of Rats (흰쥐 후지근 피판에서 허혈-재순환 손상시 pERK1/2 발현에 대한 ${\alpha}-lipoic$ Acid의 효과)

  • Song, Jeong-Hoon;Kim, Min-Sun;Park, Byung-Rim;Park, Han-Su;Chae, Jeong-Ryong;Lee, Hye-Me;Na, Young-Cheon
    • Archives of Reconstructive Microsurgery
    • /
    • v.14 no.2
    • /
    • pp.85-94
    • /
    • 2005
  • Purpose: This study was to evaluate the effect of ${\alpha}-lipoic$ acid, a potent free radical scavenger, on the expression of active form of extracellular signal-regulated kinase (pERK1/2) proteins from hindlimb muscles of rats following ischemia-reperfusion injury. Material and methods: 64 health, $280{\sim}350\;g$ weighted Sprague-Dawley male rats were used. In order to make a muscle flap, the gastrocnemius (GC) and soleus (SOL) muscles were dissected and elevated. The popliteal artery was occluded for 4hours and reperfused for 10 minutes, 30 minutes, 1 hour, 2 hours and 4 hours, respectively. Results: The ischemia by occlusion of the popliteal artery itself caused a minimal change in expression of phosphorylated form of proteins observed in hindlimb muscle. In contrast, after 4 hours of ischemia, immunoreactivity for pERK1/2 in the GC muscle showed dual peaks at 10 minutes and 4 hours after reperfusion. In ${\alpha}-lipoic$ acid treated group, the expression of pERK1/2 was increased significantly compared to I/R-only group. Conclusion: These results suggest that ${\alpha}-lipoic$ acid may protect I/R injury of the skeletal muscle through free radical scavening and activation of intracellular pERK1/2 expression.

  • PDF

Acute hepatic injury following ischemia and reperfusion in rats

  • Park, Mee-Jung-;Lee, Sang-Ho-;Park, Doo-Soon-;Cho, Tai-Soon;Lee, Sun-Mee-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.340-340
    • /
    • 1994
  • Since total hepatic ischemia(IS) occurs with transplantation, there has been interest in evaluating hepatic function after ischemia and subsequent reflow of blood. Four groups of animals were studied: group 1 (sham), group 2 (30mins IS), group 3 (60mins IS), and g.cup 4 (90mins IS). Serum transaminase(STA), wet weight-to-dry weight ratio(W/D), lipid peroxides(LPO), glucose-6-phosphatase(G-6-Pase) activity, Na$\^$+//K$\^$+/-ATPase(ATPase) activity were measured at 1, 5 and 24hrs after hepatic ischemia. Significant changes occurred between 1 and 5hrs of reperfusion. STA was 3579${\pm}$401, 4593${\pm}$675 and 6348${\pm}$808 U/L in group 2, 3 and 4 respectively. These changes were ischemic time-dependent manner. W/D in group 3 and 4 were significantly increased than that in sham group at all time points measured. In sham group, the level of LPO in the liver microsome remained constant at approximately 0. 5nmole MDA formed/mg protein througllout the experiment, In all ischemic groups on the other hand, the level of LPO started to increase at ischemia and markedly increased at all reperfusion period. Similar to STA, these changes were also dependent on duration of ischemia. Although G-6-Pase activity remained unchanged in both group 2 and group 3 until 5hrs of reperfusion, marked decrease in G-6-Pase activity was observed at grcup 4. ATPase activity was significantly decreased at 1, 5 and 24 hrs of reperfusion in group 3, whereas it was not changed in group 2. Furthermore, ATPase activity in group 4 started to decrease at ischemia and markedly decreased for entire reperfusion period. These data suggest that severity of hepatocellular injury is associated with period of ischemia as well as period of reperfusion.

  • PDF

Effect of MCT (medium-chain triglyceride) and LCT (long-chain triglyceride) on Myocardial Ischemia/Reperfusion Injury and Platelet Aggregation in Rat (MCT(medium-chain triglyceride) 및 LCT(long-chain triglyceride) 유제가 백서에서 허혈/재관류 심장기능손상 및 혈소판응집능에 미치는 영향)

  • Lee, Soo-Hwan;Jung, Yi-Sook;Hong, Jeong;Kim, Min-Hwa;Lee, Hee-Joo;Baik, Eun-Joo;Wang, Hee-Jung;Kim, Myung-Wook;Moon, Chang-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.358-363
    • /
    • 1998
  • Intravenous lipid emulsion is used extensively as a major component of parenteral nutrition for patients in the surgical intensive care unit. Abnormal cardiovascular function related to lipid infusion has been reported although conflicting results exist. In the present study, we investigated the effects of intravenous emulsions of long-chain triglyceride (LCT) and medium-chain triglyceride (MCT) on myocardial ischemia/ reperfusion injury and on platelet aggregation in rat. There was no difference between LCT and MCT considering the effects on left ventricular developed pressure (LVDP) and coronary flow rate (CFR) before and after ischemia/reperfusion in isolated rat heart. On the other hand, a difference was found between LCT and MCT with regard to their effects on heart rate (HR) and end diastolic pressure (EDP) after ischemia/reperfusion. After ischemia/reperfusion, HR was significantly (P<0.05) reduced and EDP significantly (P<0.05) inc.eased by LCT (18$\pm$2.0% and 42.8$\pm$8.9%, respectively), but not by MCT Ex vivo platelet aggregation induced by collagen was reduced by LCT infusion, but not by MCT These findings suggest that MCT may have slightly more favorable effect than LCT on the myocardial function after ischemia/reperfusion in rat.

  • PDF

Protective Mechanism of Nitric Oxide and Mucus against Ischemia/Reperfusion-Induced Gastric Mucosal Injury

  • Kim, Hye-Young;Nam, Kwang-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.511-519
    • /
    • 1998
  • This study investigated the role of nitric oxide on the oxidative damage in gastric mucosa of rats which received ischemia/reperfusion and its relation to mucus. Nitric oxide synthesis modulators such as L-arginine and $N^G-nitro-L-arginine$ methyl ester, and sodium nitroprusside, a nitric oxide donor, were injected intraperitoneally to the rats 30 min prior to ischemia/reperfusion which was induced by clamping the celiac artery and the superior mesenteric artery for 30 min and reperfusion for 1 h. Lipid peroxide production, the contents of glutathione and mucus, and glutathione peroxidase activities of gastric mucosa were determined. Histological observation of gastric mucosa was performed by using hematoxylin-eosin staining and scanning electron microscopy. The result showed that ischemia/reperfusion increased lipid peroxide production and decreased the contents of glutathione and mucus as well as glutathione peroxidase activities of gastric mucosa. Ischemia/reperfusion induced gastric erosion and gross epithelial disruption of gastric mucosa. Pretreatment of L-arginine, a substrate for nitric oxide synthase, and sodium nitroprusside prevented ischemia/reperfusion-induced alterations of gastric mucosa. However, $N^G-nitro-$ L- arginine methyl ester, a nitric oxide synthase inhibitor, deteriorated oxidative damage induced by ischemia/reperfusion. In conclusion, nitric oxide has an antioxidant defensive role on gastric mucosa by maintaining mucus, glutathione, and glutathione peroxidase of gastric mucosa.

  • PDF

The Effect of Exercise Training (EXE) on Myocardium Glucose Metabolic Phenotypic Proteins and HSP-60 Protein Expression after Ischemia/Reperfusion Injury in STZ-induced Rats (지구성 운동이 STZ-당뇨 유발 쥐의 허혈/재 관류 손상 후 심근의 당대사 관련 표현형 단백질과 HSP-60 단백질 발현에 미치는 영향)

  • Bae, Hee-Suk;Um, Hyun-Seob;Kang, Eun-Bum;Yang, Chum-Yeol;Lee, Yong-Ro;Lee, Chang-Guk;Cheon, U-Ho;Jeon, Hye-Ja;Cho, In-Ho;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.644-651
    • /
    • 2009
  • The objective of this study was to identify EXE (1 hr a day at 21 m/min for 5 day/wk, at 0 % grade for 6 wk) on myocardium glucose metabolic phenotypic proteins (AMPK-PGC-1${\alpha}$-GLUT-4) and HSP-60 protein expression after ischemia/reperfusion injury (IRI) in STZ-induced rats. EXE was performed using STZ-induced diabetic rats on a rodent treadmill (28 m/min, 1 hr/day, 5 day/wk for 6 wk). The results of this study suggest that i) serum insulin level was not changed among groups (p>l0.05). ii) the LVDP level increased significantly in the STZ-EXE-IRI group compared to the STZ-IRI group at 60 min (p<0.01), 70 min (p<0.05) and 80 min (p<0.05) after reperfusion, respectively, and iii) AMPK phosphorylation (p<0.01), PGC-1${\alpha}$ protein (p<0.001), GLUT-4 protein (p<0.001) and HSP-60 protein expressions (p<0.05) increased significantly in the STZ-EXE-IRI group compared to the STZ-IRI group. In conclusion, the findings of the present study reveal that EXE may provide therapeutic value to insulin dependent diabetic patients with peripheral insulin resistance and myocardium injury by improving glucose metabolic proteins (AMPK-PGC-1${\alpha}$-GLUT-4) and heat shock protein-60 (HSP-60), along with increasing LVDP levels and decreasing glucose levels. Therefore, EXE protects the STZ-induced diabetic myocardium injury against ischemia/ reperfusion injury.