• Title/Summary/Keyword: Repeated shear test

Search Result 71, Processing Time 0.028 seconds

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

Repeated Loading Tests of Reinforced Concrete Beams Containing Headed Shear Reinforcement (Headed Shear Bar를 사용한 콘크리트 보의 반복 하중 실험)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.512-517
    • /
    • 2003
  • The repeated loading responses of four shear-critical reinforced concrete beams, with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}C$ standard hooks, having free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups, with improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened, resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

  • PDF

Analysis of colliding index on impact behavior of RC columns under repeated impact loading

  • Tantrapongsaton, Warakorn;Hansapinyo, Chayanon;Wongmatar, Piyapong;Limkatanyu, Suchart;Zhang, Hexin;Charatpangoon, Bhuddarak
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact.

Behaviour evaluation of shear connection by means of shear-connection strips

  • Rovnak, Marian;Duricova, Antonia
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.247-263
    • /
    • 2004
  • Comparison of behaviour of shear connections by means of shear-connection strips (perfobond and comb-shaped strips) and headed studs under static and repeated loading, possible failure modes of concrete dowels and ways of the quantitative differentiation of some failure modes are described in the paper. The article presents a review of knowledge resulting from the analysis of shear-connection effects based on tests of perfobond and comb-shaped strips carried out in the laboratories of the Faculty of Civil Engineering of the Technical University of Kosice (TU of Kosice) in Slovakia and their comparison with results obtained by other authors.

A Study on the Effect of Normal Stress on the Joint Shear Behavior (절리면 전단거동에서의 법선응력 영향 고찰)

  • Cho, Taechin;Suk, Jaewook
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • Shear behavior of joint plane has been investigated considering the magnitude of normal stresses and initial surface roughness. Shear strength of joint plane has been measured by performing the multi-stage shear test in which applied normal stress level has been increased stepwise. Multi-stage shear test within the specified normal stress range has been repeated and two types of strength parameter variation have been observed: type 1 - both cohesion and friction angle decrease, type 2 - cohesion decrease and friction angle increase. Trends of strength parameter variation for the three rock types, gneiss, granite and shale, have been investigated and the influence of initial roughness of joint plane on the sequential shear strength change for the repeated multi-stage shear tests also has been analyzed.

Experimental Investigation of Shear Modulus of a Core in a Metallic Sandwich Plate with a Truss Core (트러스형 금속 샌드위치 판재에서 심재의 전단특성계수의 실험적 결정)

  • Jung, Chang-Gyun;Seong, Dae-Young;Yang, Dong-Yol;Moon, Kyung-Je;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.67-73
    • /
    • 2007
  • A sandwich plate with a truss core is composed of two face sheets and a pyramidal truss core between face sheets. This paper shows how to estimate the shear modulus of a truss core, experimentally. To determine the shear modulus of truss cores, 3-point bending tests are performed. For tests, metallic sandwich beams with truss cores are fabricated. Two kinds of truss cores are tested to investigate the shear modulus. Each test is repeated under different widths in order to increase accuracy. As a result, the shear modulus of sandwich beam is properly calculated. The deflection of a sandwich beam with a truss core by shear deformation takes the major contribution of the total deflection and the shear modulus of sandwich beam should be considered whenever it is designed.

Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes (신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험)

  • 최동욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.137-147
    • /
    • 1997
  • Interface shear strength of' concrete under static loading and deterioratiion of interface strength by fatigue loading in shear were experimentally investigated using composite beam test specimens. Thirteen beams were constructed. Five composite beams were tested statically until interface delaminations were observed in the static tests. Seven composite beam and one monolithically cast beam were subjected to two to three million cycles of fatigue load. Test variables were interface roughness, interface shear reinforcement, and presence of interface bond. The average interface shear strength of the composite beams with bonded-rough interface was 6, 060 kPa. No interface delamination was observed after cycling for the composite beams with bonded - rough interface and interface bond was not influenced by repeated application of the shear stress of 2.000 kPa(about 1/3 of the static interface shear strength). Smooth interface and unbonded-rough interface with shear reinforcement deteriorated under repeated shear loading.

Analysis of behavioral characteristics of liquefaction of sand through repeated triaxial compression test and numerical analysis

  • Hyeok Seo;Daehyeon Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.165-177
    • /
    • 2024
  • Liquefaction phenomenon refers to a phenomenon in which excess pore water pressure occurs when a dynamic load such as an earthquake is rapidly applied to a loose sandy soil ground where the ground is saturated, and the ground loses effective stress and becomes liquid. The laboratory repetition test for liquefaction evaluation can be performed through a repeated triaxial compression test and a repeated shear test. In this regard, this study attempted to evaluate the effects of the relative density of sand on the liquefaction resistance strength according to particle size distribution using repeated triaxial compression tests, and additional experimental verification using numerical analysis was conducted to overcome the limitations of experimental equipment. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the classification of soil, and the liquefaction resistance strength of the SP sample close to SW was quite high. As a result of numerical analysis, it was confirmed that the liquefaction resistance strength increased as the confining pressure increased under the same relative density, and the liquefaction resistance strength did not decrease below a certain limit even though the confining pressure was significantly reduced at a relatively low relative density. This is judged to be due to a change in confining pressure according to the depth of the ground. As a result of analyzing the liquefaction resistance strength according to the frequency range, it was confirmed that there was no significant difference from the laboratory experiment results in the basic range of 0.1 to 1.0 Hz.

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.