• Title/Summary/Keyword: Reparameterization Trick

Search Result 2, Processing Time 0.014 seconds

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.