• Title/Summary/Keyword: Repairing cost

Search Result 120, Processing Time 0.024 seconds

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

A Study of Bonding Strength of Repaired Resin Denture Base by Artificial Saliva Absorption (레진의치상 수리 시 인공타액 흡수도에 따른 결합강도 연구)

  • Kang, Myung-Ho;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Purpose: There are some advantages of the acrylic resin denture base ; appropriate strength, volume safety, simple processing apparatus, and low cost. But, it have a weakness for fracture by intense pressure or shock. However, the repairs for resin denture base are possible using various materials and techniques. There is a few studies in repairs for resin denture base, but not clinical researches. And there is no studies in absorbed saliva into the region of fracture and bond strength. This study is to observe re-bond strength of resin denture base after repairing under saliva absorption. Methods: The samples were made of heat curing resin and the rectangular parallelepiped specimens which were 50mm long, 10mm wide and 3mm high. The four different groups immersed in the artificial saliva for 2 weeks were prepared, 1) no repaired control samples, 2) immediately repaired samples, 3) repaired samples after 1 day dry, and 4) repaired samples after 3 days dry. The prepared samples were repaired by two different curing materials, self curing resin and heat curing resin method. Each groups composed of 10 specimens were experimented with the three point bending tests for bonding strength measuring Results: There were under condition absorbed in the artificial saliva and repaired by self curing resin method, repaired specimens after 1 day and 3 days dry groups had higher values of bonding strengths than control group, and bonding strengths of immediately repaired samples were similar to those of control samples (p<0.05). There were under condition immersed in the artificial saliva and repaired by heat curing resin method, immediately repaired samples showed similar values to bonding strengths of control groups, and repaired samples after 1 day and 3 days dry groups were lower than those of control group (p>0.05). Conclusion: In this study, the repairs for resin denture base were remarkably high values of bonding strengths than those of the past, and showed that have stable bonding strengths independent of saliva absorption of denture base, so present repairs for resin denture base can be performed, regardless of saliva conditions.

Bond Behavior of GFRP Rebars Embedded in Concrete Under Cyclic Loading (반복하중을 받는 GFRP 보강근의 부착특성)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.101-104
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Fiber Reinforced Polymer (FRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of FRP. However, there remain various aspects of FRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between FRP and concrete. In this study, the bond-behavior of FRP bars in concrete is investigated via the pullout test with three varying parameters: surface condition of FRP bars, concrete compression strength, and cyclic loading patterns. As a result of experiment, the bond strength of GFRP increased with the concrete compression strength increasing and decreased with applying cyclic load.

  • PDF

Characterization of Repairing Polyurethane for Trenchless Sewer Pipeline (비굴착 하수관로용 폴리우레탄 보수재 특성 평가)

  • Park, Jun-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3542-3547
    • /
    • 2015
  • There is commonly used the full depth excavation method of sewer pipeline maintenance in Korea. This induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are liquid and hardened polyurethane, and polyurethane CIPP. The lab tests were followed by Korean Standard. There are no side effects, like harmless to the human body and air pollution with stink. Judging from the limited test results, all the items tested were satisfied the KS criteria.

Bandwidth Analysis of Massively Multiplayer Online Games based on Peer-to-Peer and Cloud Computing (P2P와 클라우드 컴퓨팅에 기반한 대규모 멀티플레이어 온라인 게임의 대역폭 분석)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.143-150
    • /
    • 2019
  • Cloud computing has recently become an attractive solution for massively multiplayer online games(MMOGs), as it lifts operators from the burden of buying and maintaining hardware. Peer-to-peer(P2P) -based solutions present several advantages, including the inherent scalability, self-repairing, and natural load distribution capabilities. We propose a hybrid architecture for MMOGs that combines technological advantages of two different paradigms, P2P and cloud computing. An efficient and effective provisioning of resources and mapping of load are mandatory to realize an architecture that scales in economical cost and quality of service to large communities of users. As the number of simultaneous players keeps growing, the hybrid architecture relieves a lot of computational power and network traffic, the load on the servers in the cloud by exploiting the capacity of the peers. For MMOGs, besides server time, bandwidth costs represent a major expense when renting on-demand resources. Simulation results show that by controlling the amount of cloud and user-provided resource, the proposed hybrid architecture can reduce the bandwidth at the server while utilizing enough bandwidth of players.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

A Study on a CMS Platform for AR-based Remote Collaboration in a Smart Factory (스마트 팩토리에서의 AR 기반 원격 협업을 위한 CMS 플랫폼에 관한 연구)

  • LIm, Hwang-Yong;Ro, Kwang-Hyun
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.327-334
    • /
    • 2018
  • This study proposes a CMS platform for AR-based remote collaboration in a smart factory. The Smart Factory site utilizes various forms of AR technology to save time and money. As the level of smart factory increases, system-oriented tasks such as machinery and equipment are performed in people-oriented work. Therefore, there is a need for a system that allows the operator to immediately repair the machine or equipment in case of a failure, or to get help if necessary. Remote collaborative CMS platform is designed to work in conjunction with DATABASE of ERP, MES / POP, and PLM system built through text, 2D 3D contents and smart factory business, This study is meaningful in that it saves time and cost by sharing information such as management, repair method, manual, etc., and repairing it quickly.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

Low-Cost Cultivation and Sporulation of Alkaliphilic Bacillus sp. Strain AK13 for Self-Healing Concrete

  • Hong, Minyoung;Kim, Wonjae;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1982-1992
    • /
    • 2019
  • The alkaliphilic, calcium carbonate precipitating Bacillus sp. strain AK13 can be utilized in concrete for self-repairing. A statistical experimental design was used to develop an economical medium for its mass cultivation and sporulation. Two types of screening experiment were first conducted to identify substrates that promote the growth of the AK13 strain: the first followed a one-factor-at-a-time factorial design and the second a two-level full factorial design. Based on these screening experiments, barley malt powder and mixed grain powder were identified as the substrates that most effectively promoted the growth of the AK13 strain from a range of 21 agricultural products and by-products. A quadratic statistical model was then constructed using a central composite design and the concentration of the two substrates was optimized. The estimated growth and sporulation of Bacillus sp. strain AK13 in the proposed medium were 3.08 ± 0.38 × 108 and 1.25 ± 0.12 × 108 CFU/ml, respectively, which meant that the proposed low-cost medium was approximately 45 times more effective than the commercial medium in terms of the number of cultivatable bacteria per unit price. The spores were then powdered via a spray-drying process to produce a spore powder with a spore count of 2.0 ± 0.7 × 109 CFU/g. The AK13 spore powder was mixed with cement paste, yeast extract, calcium lactate, and water. The yeast extract and calcium lactate generated the highest CFU/ml for AK13 at a 0.4:0.4 ratio compared to 0.4:0.25 (the original ratio of the B4 medium) and 0.4:0.8. Twenty-eight days after the spores were mixed into the mortar, the number of vegetative cells and spores of the AK13 strain had reached 106 CFU/g within the mortar. Cracks in the mortar under 0.29 mm were healed in 14 days. Calcium carbonate precipitation was observed on the crack surface. The mortar containing the spore powder was thus concluded to be effective in terms of healing micro-cracks.

Economic Analysis with Development of Rapid Setting Alumina-based Binder for Road Repair (알루미나계열 속경성 도로 보수재료 개발에 따른 경제성 분석)

  • Yang, Hee-Jun;Yang, Min-Jae;Hong, Sung-In;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • In case of Korea highways, about 60% of highways are paved by concrete and more than 50% of them were repaired due to reduction in required performance such as damage in pave or joint and delamination of cover pavement. However, repairing old material in such structure generally costs a lot of money and induces difficulty in maintenance. Thus, enhanced material for ensuring economic efficiency should be developed. The present study designed concrete mixtures with 3 levels of replacement using OPC (0, 10, 20%) in calcium aluminate cement and to evaluate material performance for load pavement, experimental works for setting time, compressive strength and flexural strength were carried out on those materials. As a result, 20% replacement for OPC was determined as an optimized material in terms of required physical performance and its unit price. Moreover, to determine cost in load pavement economy analysis using a program (CA4PRS) was conducted with widely used paving materials. Result showed that application for 20% replacement for OPC was the most efficient in economical aspect, arising from 4.052 and 1.577 billion won for total construction and user cost, respectively.