• Title/Summary/Keyword: Renewable energy plant

Search Result 466, Processing Time 0.034 seconds

Economic Evaluations of Direct/indirect Coal Liquefaction Processes (직.간접석탄액화공정의 경제성 평가)

  • Park, Joo-Won;Bae, Jong-Soo;Kweon, Yeong-Jin;Kim, Hak-Joo;Jung, Heon;Han, Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.857-860
    • /
    • 2009
  • This report examines the economic feasibility of a commercial 50,000 barrel per day direct/indirect coal liquefaction (DCL/ICL) facility to produce commercial-grade diesel and naphtha liquids from medium-sulfur bituminous coal. The scope of the study includes capital and operating cost estimates, sensitivity analysis and a comparative financial analysis. Based on plant capacity of 50,000BPD, employing Illinois #6 bituminous coal as feed coal the total capital cost appeared $3,994,858,000(DCL) and $4,942,976,000(ICL). Also, the internal rate of return of DCL/ICL appeared 13.27% and 12.68% on the base condition. In this case, coal price and sale price of products were the most influence factors. And ICL's payback period(6.8 years) was longer than DCL's (6.6 years). According to sensitivity analyses, the important factors on DCL/ICL processes were product sale price, feed coal price and the capital cost in order.

  • PDF

Feasibility Study on the Development of Environmental Friendly Livestock Complex in the Reclaimed Tideland (간척지 자연순환형 친환경축산단지 도입 타당성 연구)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.430-433
    • /
    • 2009
  • The development of large-scale environmental friendly livestock complex in the reclaimed tideland is one of different alternatives to increase the competitiveness of internal livestock industry against an international opening markets as DDA and FTA in agricultural field. Recently, it is possible to introduce an environmental friendly livestock complex in the reclaimed tideland by an amendment of the acts for agricultural land. However more studies that are on the basis of nitrogen and phosphorus mass balance need to preserve the agricultural environments as the quality of agricultural water and soil in rural area. In this study, the reference for feasibility study is Whaong reclaimed tideland which located at Whaseong city, Gyeonggi Province, and a basic concept of environmental friendly livestock complex is the production of forage crops with the supply of liquid fertilizer and the production of bioenergy such as biogas by the recycling of pig slurry as a resource. The mass balance of nitrogen based on between forage crops such as maize, barley and liquid fertilizer supplied at the reclaimed tideland, and also it was estimated an economical efficiency as anaerobic digestion plant for treating pig slurry of $100m^3/day$ introduce in an environmental friendly livestock complex.

  • PDF

Field study of 5kW class PEMFC system (5kW급 고분자전해질 연료전지 시스템 실증연구)

  • Lee, SooJae;Choi, Dae Hyun;Jun, HeeKwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.87.1-87.1
    • /
    • 2011
  • The residential Fuel Cell system has high efficiency of 85% with transferring natural gas to electrical power and heat, directly and it is a friendly environmental new technology in that $CO_2$ emission can reduce 40% compared with conventional power generator and boiler. The residential fuel cell system consists of two main parts which have electrical and hot storage units. The electrical unit contains a fuel processor, a stack, an inverter, a control unit and balance of plant(BOP), and the cogeneration unit has heat exchanger, hot water tank, and auxiliaries. 5kW class fuel process was developed and tested from 2009, it was evaluated for long-term durability and reliability test including with improvement in optimal operation logic. Stack development was crried out through improvement of design and evaluation protocol. Development of system controller was successfully accomplished through strenuous efforts and original control logic was optimized in 5kW class PEMFC system. In addition, we have been focused on development of system process and assembly technology, which bring about excellent improvement of reliability of system. The 5kW class PEMFC system was operated under dynamic conditions for 1,000 hours and it showed a good performance of total efficiency and durability.

  • PDF

Heat transfer performance with laminated mesh and honeycomb volumetric air receivers for the high-temperature solar power plant system (고온 태양열 공기식 흡수기 충진재에 따른 열전달 성능분석)

  • Lee, J.H.;Kim, Y.;Jeon, Y.H.;Seo, T.B.;Kange, Y.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.184-187
    • /
    • 2006
  • The heat transfer characteristics of solar tower receivers are experimentally investigated with receiver shapes. Generally the heat transfer characteristics become different according to the shapes and materials of the volumetric air receiver. In order to study these effects, The experimental apparatus adopting laminated mesh and honeycombs as the volumetric air receiver is proposed. The receiver consists of laminated mesh (diameter; 100mm, thickness; 1mm), honeycombs (diameter; 100mm, thickness; 30 mm) inserted out the heat transfer characteristics of the laminated mesh the air temperatures are obtained by installing 3 thermocouples on each layer, dividing ceramic tube into 4 layers. Also, a radiative shield is installed to measure the only air temperature. The data for laminated mesh and honeycomb thickness of 30, 60, 90mm are obtained. The results show that the temperature of layer 3 is higher than those of layer 2 and layer 1.

  • PDF

Effect of hydrogen recirculation in PEM fuel cell with 2D steady-state model (2차원 정상상태 모델을 이용한 고분자전해질형 연료전지의 수소 재순환의 영향)

  • Chung, Hyun-Seok;Ha, Tae-Jung;Kim, Hyo-Won;Cho, Sung-Woo;Han, Chong-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.209-212
    • /
    • 2007
  • 고분자전해질형 연료전지의 구조 및 구성품의 물성에 따른 성능 및 물이동 현상에 관해서 많은 연구가 진행되고 있다, 이들 연구는 대체적으로 연료 전지의 BOP(Balance of plant)를 포함하는 연료전지 시스템에 관한 연구 보다는 단위 전지 및 스택에 관한 연구에 국한되어 왔다. 연료전지의 시스템에 관한 연구들 또한 세부적인 연료전지 내부의 거동에 대해서는 고려하지 않고 있었다. 이는 연료전지의 상세 모델을 이용해 연료전지 시스템에 대해 접근하기 보다는 시스템의 성능 및 동특성에 대한 연구가 주를 이루었기 때문으로 생각된다. 본 연구에서는 연료전지 음극의 수소 배출가스를 재순환할 경우 연료전지 내부에서의 거동에 미치는 영향에 대해 2차원 정상상태 모델을 이용하여 분석해 보았다. 또한 재순환된 수소에 의한 연료전지 내부 거동의 변화 및 수소 이용율 상승 효과를 연료 전지 성능과 함께 비교해 보았다 이를 위해 2차원 정상상태 모델을 개발하였고 이를 실험을 통해 검증하는 작업을 수행하였다. 여기에 사용된 연료전지 모델은 Gore社 의 $PRIMea^{(R)}$을 사용한 연료전지의 성능을 잘 예측하고 내부의 유동 및 물이동 현상에 관한 정보를 제공한다. 이는 여러 하이브리드 자동차용 연료전지 시스템이 연료전지 배출가스의 재순환을 고려하고 있는 상황에서 연료전지 작동 조건의 최적화에 유용한 정보를 제공 할 수 있다는 의의를 가진다.

  • PDF

Pilot-scale Study on Nitrogen Removal of Effluent from Biogas Plant (바이오가스 플랜트 처리수의 고농도 질소 제거)

  • Yoo, Sungin;Yu, Youngseob;Lee, Yongsei;Park, Hyunsu;Yoo, Heechan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.175.1-175.1
    • /
    • 2011
  • A rotating activated bacillus contactor (RABC) process with a series of aerobic reactors was tested in pilot scale to treat digested liquid from an anaerobic digester treating swine wastewater and sewage sludge. The influent (digested liquid) for the RABC process showed C/N ratios less than 2 as a typical feature of effluent from anaerobic digesters. The pilot process, which consists of three 3 RABC reactors, four aerobic tanks and a sedimentation tank, was operated for 210 days with a hydraulic retention time of 20 days without pH and temperature control. Since the Bacillus-enriched aerobic reactors shows high efficiencies of nitrogen removal at low DO levels less than 1.0 mg/L, they were operated at reduced aeration intensities. With relatively low concentrations of organics in comparison with nitrogen concentrations, the RABC process tested in this study showed stable and high nitrogen and organics removal efficiencies over 80%. The nitrogen removal process tested in this study was proven to be an effective and operation-cost saving (lower aeration) method to remove nitrogen without adding external carbon sources to meet the optimum C/N ratio.

  • PDF

A Study on Optimal Design and Operational Features of a Stand-alone 500W PEMFC System (독립형 500W PEMFC 시스템의 최적 설계 및 구동 특성에 관한 연구)

  • Park, Se-Joon;Ha, Min-Ho;Choi, Hong-Jun;Cha, In-Su;Yoon, Jeong-Phil;Lim, Jung-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.320-322
    • /
    • 2008
  • The international oil price now has been going up every each day, about 120 USD per a gallon April 2008, so that most of countries in the world are concern of the the shortage of petroleum and the development of new and renewable energy resources. This paper presents optimal design and operational features of stand-alone 500W PEMFC(Proton Exchange Membrane Fuel Cell) system which can be a substitute instead fossil fuel. The stack of PEMFC is composed of 35 laminated graphites, and a unit cell of the stack has electrical characteristics as below; 14W, 0.9V, 15A. The other components of BOP(Balance of Plant) are composed of hydrogen and nitrogen tanks, regulators, 3way solenoid valves, mass flow meters, etc.

  • PDF

Estimating Groundwater Level Change Associated with River Stage and Pumping using Time Series Analyses at a Riverbank Filtration Site in Korea

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoung-Soo;Lee, Soo-Hyoung;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1135-1146
    • /
    • 2017
  • At riverbank filtration sites, groundwater levels of alluvial aquifers near rivers are sensitive to variation in river discharge and pumping quantities. In this study, the groundwater level fluctuation, pumping quantity, and streamflow rate at the site of a riverbank filtration plant, which produces drinking water, in the lower Nakdong River basin, South Korea were interrelated. The relationship between drawdown ratio and river discharge was very strong with a correlation coefficient of 0.96, showing a greater drawdown ratio in the wet season than in the dry season. Autocorrelation and cross-correlation were carried out to characterize groundwater level fluctuation. Autoregressive model analysis of groundwater water level fluctuation led to efficient estimation and prediction of pumping for riverbank filtration in relation to river discharge rates, using simple inputs of river discharge and pumping data, without the need for numerical models that require data regarding several aquifer properties and hydrologic parameters.

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.