• 제목/요약/키워드: Renewable energy consumption

검색결과 393건 처리시간 0.031초

EDLC를 위한 성능시험용 충방전기 개발 (Development of Charger/Discharger to Test Performance for EDLC)

  • 김금수;문종현;조현철;김동희
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.16-22
    • /
    • 2012
  • With the increase of consumption of new renewable energy, the use of Electric Double Layer Capacitor(EDLC) is being gradually widened as the next generation energy storage device. In order to expand the market of EDLC which is recently receiving a lot of attraction as a new promising area, development of a charge/discharge cycle tester to measure and test performance, is essential. Therefore, this research designed a circuit to measure capacity and internal resistance and a circuit to measure voltage maintenance properties, based on EDLC's basic charging/discharging properties so it is able to measure the state of charge and discharge at high speed. When evaluating performance characteristics, the 5[V]/100[A] prototype-EDLC charge/discharge testing system developed for this research showed ${\pm}0.1$[%] of accuracy of voltage and current measurement. It was also proved that the developed charge/discharge testing system for EDLC can be applied to the actual industry, when testing the entire system using a program produced for data monitoring and acquisition.

SCM440(H) 및 SNCM439 강의 열처리 특성에 미치는 질량효과 (Mass Effect on the Heat Treated Mechanical Properties of SCM440(H) and SNCM439 Steel)

  • 남기석;현양기;조창용;조유종
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.10-15
    • /
    • 2011
  • Recently, renewable energy sources such as wind turbine, solar cell are interested in preventing global warming which is caused by the consumption of fossil fuel. SCM440(H) and SNCM439 have been used in the major components of the wind turbine gear because of excellent mechanical properties. In the present study, the heat treated mechanical properties of SCM440(H) and SNCM439 with 150 mm diameter were compared with those with 25 mm diameter which is generally accepted material for structural application. Heat treated SCM440(H) showed better mechanical properties such as tensile strength, hardness and impact absorbed energy compared with those in SNCM439. Hardenss value between as-quenched and as-quenched followed by tempering showed big difference in SNCM439, however the difference in SCM440(H) was relatively small. Heat treated mechanical properties of the alloys with 25 mm diameter were more uniform value than those with 150 mm diameter.

스마트그리드 도입에 따른 소비자 보호 연구 (A Study on Consumer Protections for the Introduction of Smart Grid)

  • 김현제;조성한
    • 디지털융복합연구
    • /
    • 제9권5호
    • /
    • pp.1-9
    • /
    • 2011
  • 스마트그리드를 통해 소비자 선택 확대, 전력산업의 미래 변화에 적응과, 신재생에너지원의 사용증가 등의 여러 가지 편익을 도모 할 수 있다. 소비자는 적극적인 수요반응을 통해 시스템의 전반적인 효율성 향상에 기여하며 사업자가 제공하는 더 많은 정보에 기초하여 에너지이용 효율을 제고할 수 있다. 소비자보호를 위한 지능형전력망 정보의 수집, 활용, 보호에 대한 기본적인 법적 조항은 지능형전력망 구축 및 이용 촉진에 관한 법률에 제시되어 있다. 마지막으로 스마트그리드에 대한 소비자의 인식 제고를 위해 스마트그리드 홍보 및 교육 확대가 무엇보다 필요하다. 따라서 스마트그리드 소비자 수용성 제고 방안을 수립해야 한다는 것이다.

A critical review of slag and fly-ash based geopolymer concrete

  • Akcaoglu, Tulin;Cubukcuoglu, Beste;Awad, Ashraf
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.453-458
    • /
    • 2019
  • Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.

GIS를 이용한 태양광 발전시스템의 활용도 높은 농촌 그린빌리지 적정입지 평가 - 충청남도 금산군 추부면을 중심으로 - (High Utilization of Photovoltaic Power System in Rural Green Village Location Analysis and Evaluation using GIS - With Chubumyeon, Keumsan, Chungnam province -)

  • 도재형;김대식;구희동
    • 농촌계획
    • /
    • 제20권1호
    • /
    • pp.51-62
    • /
    • 2014
  • The composition of rural Green Village requires higher utilization of renewable energy in those selected rural villages. The purpose of this study is to select the best results of rural green villages when using photovoltaic power system(PV system). 10 different rural villages in Chubumyeon, Keumsan, Chungnam province, were selected as study villages. This study shows measured solar radiation data, a 20-year time series data, and GIS spatial analysis; and whose were used to predict the photovoltaic power generation. PV system is used as a form with capacity of 3kWp to use for personal and public houses. Generation data was calculated by the town, where the economics of the Green Village location analysis was performed; and the solar radiation's correction factor was calculated by the 20-year time series data and measured data by study villages. By applying to the data of DEM, slope and aspect of the study villages were found, therefore performed. Spatial analysis tools were performed by using solar radiation map's tools. Those data found were used to calculate the average needed energy every months. When used the properly calculated data, towns performed economical energy consumption in rural Green Village. Every study villages have showed very high potential for PV system. Sungdangri ranked at the first (7,401kWp/year), Jangdaeri follows behind to the second (7,203kWp/year) and Yogwangri at third (7,89kWp/year) which shows higher developed energy than other study villages. The areas covered of these three towns are as follows: Sungdangri at $33,300m^2$, Jangdaeri covers $18,000m^2$ and Yogwangri shows $46,800m^2$. With these results, analyzing the potentials using GIS spatial analysis before installation of PV system was possible. Also different villages and topography in study villages have showed various results by the area. For convenience and to shorten research time, it is possible and enough to use solar radiation tools when studying spatial analysis of solar radiation.

선박디젤기관에 있어서 바이오연료가 배기배출물특성에 미치는 영향 (Effects of the Characteristics of Exhaust Emissions by Using Bio Fuel in Marine Diesel Engine)

  • 조상곤
    • 해양환경안전학회지
    • /
    • 제21권1호
    • /
    • pp.103-108
    • /
    • 2015
  • 최근 지구 온난화는 세계 경제발전으로 화석연료 사용이 주범으로 인식하고 있다. 이러한 화석연료를 감소하기 위한 연구는 여러 대체에너지 산업으로 발전하고 있으며, 그 중 우리나라에서 생산할 수 있는 연료는 바이오연료이다. 바이오연료는 화석연료에 의해서 발생하는 환경오염 문제를 줄이면서 경제적인 이익을 주는 지속 가능한 연료이다. 그래서 바이오연료를 친환경에너지로 전환시키는 재생에너지 등에 많은 연구가 진행되고 있다. 따라서 본 실험은 어선에서 사용했던 기관을 다시 리모델링하여 실험장치를 직접 제작 설치하였고, 여러 바이오연료를 사용하여 선박의 경제적이고 친환경적인 운항에 도움을 주고자 연구하였다. 유채유, 대두유, 폐유채유의 배기배출 물특성에 미치는 영향을 종합적으로 분석한 결과는 연료의 물리적, 화학적 성분이 비슷하여 선박용 엔진에 사용이 가능하고, 연료소비율과 NOx는 약간 증가하였으나, 매연은 많이 감소하는 경향이 확인되었다.

항공분야 온실가스 감축을 위한 바이오항공유 제조기술 (Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector)

  • 김재곤;박조용;임의순;민경일;박천규;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

스마트 그리드 내 독립전원의 단독운전 방지를 위한 무선 센서 네트워크 기반의 원격 전력 감시 시스템 (Wireless Sensor Network based Remote Power Monitoring System for Anti Islanding application in Smart-Grid)

  • 김기민;이경중;문찬우;안현식;정구민
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.57-62
    • /
    • 2010
  • 최근, 산업현장의 전력분야에서는 신재생 에너지와 스마트 그리드에 관심이 모아지고 있다. 스마트 그리드는 기존 전력망에 정보통신기술을 접목하여 전력망의 신뢰성, 효율성, 안전성을 향상시키고, 전력의 생산 및 소비 정보를 양방향, 실시간으로 모니터링하면서 에너지 효율을 최적화하는 차세대 전력망 기술이다. 그러나 스마트 그리드 내의 원격 모니터링 시스템들은 대부분의 유선망을 이용하는데, 유선망은 소규모 발전기에는 설치하기 어려운 단점이 있다. 본 논문에서는 스마트 그리드 내에서의 통신거리 제약 등의 여러 가지 문제점을 해결하기 위하여 센서네트워크를 기반으로 하는 원격 전력 모니터링 시스템을 구현한다. 또한, 구현된 시스템을 이용하여 새로운 분산전원 단독운전 방지 기법을 제안하고 실험을 통하여 검증하고자 한다.

저에너지주택의 지열히트펌프시스템 냉·난방 성능분석 (Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House)

  • 백남춘;김성범;신우철
    • 설비공학논문집
    • /
    • 제28권10호
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.