• Title/Summary/Keyword: Rendering technique

Search Result 262, Processing Time 0.024 seconds

Visualization of three-dimensional medical information based on Shear-Warp Volume Rendering (Shear-Warp Volume Rendering에 의한 3차원 의료영상 정보 표현)

  • Chae Eunmi;Huh Junsung;Sah Jongyoub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.158-162
    • /
    • 1999
  • This thesis presents applications of three dimensional visualization technique based on shear-warp volume rendering to medical information. Volume rendering is compared to surface rendering and acceleration technique is also presented. The presented rendering techniques by using three-dimensional arrays of data are a widely used representation for computational fluid dynamics and geological structures as well as medical information.

  • PDF

Volume Rendering Technique for 3-D Visualization and Its Performance Improvements (물체의 3차원적 도시를 위한 입체묘사기법의 성능향상 및 그 응용)

  • Lee, Min-Seop;Cheon, Gang-Uk;Ra, J.B
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.79-88
    • /
    • 1991
  • Semi-transparent volume rendering technique can provide 3-D visualization well by voxel level Processing and alleviate segmentation arf, ifacts compared wish the surface rendering technique. In this Paper, we consider several new schemes which can improve she Perform ance of volume rendering. A directional interpolation method is proposed to reduce the artifact due to the anisotrophic resolution in X-ray CT data. The computation time for rendering is shortened by using the depth information of the 3-D object. And also, we reduce the quantization artifacts in the rendering by introducing the opacity-dependent sampling interval to sampling in ray-tracing.

  • PDF

Three dimension rendering techniques in multiplanar medical images (다층의학영상의 3차원적 표현기법에 관한 연구)

  • Kim, D.W.;Song, C.H.;Cha, E.J.;Lee, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.271-274
    • /
    • 1996
  • Shell rendering technique, which is the combined technique of surface rendering and volume rendering, was realized on workstation. By applying it to colon data acquired by CT, its validity was shown. In addition perspective projection coordinate was used for rendering the internal surface of organ and its reality was shown to be improved. This result can be use as the essential technique of virtual endoscope which is the recent hot topic in three dimensional medical imaging.

  • PDF

Rendering States Changing Costs Reducing Technique for Real-time 3D Graphics (실시간 3D 그래픽을 위한 렌더링 상태 변경 비용 감소 기법)

  • Kim, Seok-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1843-1849
    • /
    • 2009
  • In real-time 3D Graphics, pipeline optimization is one of techniques enhancing rendering performance. Pipeline optimization is kind of buffer reordering problem, but it is NP-hard. Therefore techniques that is approximating optimal solution and suitable for real-time 3D graphics are needed. This paper analyze pattern of rendering states changing costs for real-time 3D graphics, and based on this, the algorithm that brings rendering states into line by changing costs is proposed. The proposed technique shows good performance enhancement when costs of some rendering states are much higher than others. Proposed technique shows 2.5 to 4 times better performance than non-ordering algorithm and becomes more faster when rendering costs of a state gets higher.

Photon Mapping-Based Rendering Technique for Smoke Particles (연기 파티클에 대한 포톤 매핑 기반의 렌더링 기법)

  • Song, Ki-Dong;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.7-18
    • /
    • 2008
  • To realistically produce fluids such as smoke for the visual effects in the films or animations, we need two main processes: a physics-based modeling of smoke and a rendering of smoke simulation data, based on light transport theory. In the computer graphics community, the physics-based fluids simulation is generally adopted for smoke modeling. Recently, the interest of the particle-based Lagrangian simulation methods is increasing due to the advantages at simulation time, instead of the grid-based Eulerian simulation methods which was widely used. As a result, because the smoke rendering technique depends heavily on the modeling method, the research for rendering of the particle-based smoke data still remains challenging while the research for rendering of the grid-based smoke data is actively in progress. This paper focuses on realistic rendering technique for the smoke particles produced by Lagrangian simulation method. This paper introduces a technique which is called particle map, that is the expansion and modification of photon mapping technique for the particle data. And then, this paper suggests the novel particle map technique and shows the differences and improvements, compared to previous work. In addition, this paper presents irradiance map technique which is the pre-calculation of the multiple scattering term in the volume rendering equation to enhance efficiency at rendering time.

  • PDF

Development of Rendering Techniques for Particle-based Flow Simulation (입자 기반 유동 시뮬레이션의 렌더링 기술 개발)

  • Lee, Byung-Hyuk;Park, Jong-Chun;Jang, Young-Su;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Recently, various particle based simulation techniques, which solve the Navier Stokes and continuity equations, have been developed and applied to complicated engineering problems. However, although progress is being made on their visualization or rendering techniques, these are still insufficient. In this study, to render a smooth configuration for a free surface, a rendering technique was developed that included the generation of density fields from the location information for simulated particles and the creation model for a polygonal surface. The developed rendering technique was applied to the visualization of a dynamic free surface flow interacting with a structure using a particle based simulation technique.

High-quality Shear-warp Volume Rendering Using Efficient Supersampling and Pre-integration Technique (효율적인 수퍼샘플링과 선-적분을 이용한 고화질 쉬어-왑 분해 볼륨 렌더링)

  • Kye, Hee-Won;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.971-981
    • /
    • 2006
  • As shear-warp volume rendering is the fastest rendering method among the software based approaches, image quality is not good as that of other high-quality rendering methods. In this paper, we propose two methods to improve the image quality of shear-warp volume rendering without sacrificing computational efficiency. First, supersampling is performed in intermediate image space. We propose an efficient method to transform between volume and image coordinates at the arbitrary ratio. Second, we utilize pre-integrated rendering technique for shear-warp rendering. We propose new data structure called overlapped min-max map. Using this structure, empty space leaping can be performed so that we can maintain the rendering speed even though pre-integrated rendering is applied. Consequently, shear-warp rendering can generate high-qualify images comparable to those generated by the ray-casting without degrading speed.

  • PDF

Post-Rendering 3D Warping using Projective Texture (투영 텍스춰를 이용한 렌더링 후 3차원 와핑)

  • Park, Hui-Won;Ihm, In-Seong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.8
    • /
    • pp.431-439
    • /
    • 2002
  • Due to the recent development of graphics hardware, real-time rendering of complex scenes is still a challenging task. As results of researches on image based rendering, the rendering schemes based on post-rendering 3D warping have been proposed. In general, these methods produce good rendering results. However, they are not appropriate for real-time rendering since it is not easy to accelerate the time-consuming algorithms within graphics subsystem. As an attempt to resolve this problem of the post-rendering 3D warping technique, we present a new real-time scheme based on projective texture. In our method, two reference images obtained by rendering complicated objects at two consecutive points of time are used. Rendering images of high quality for intermediate points of time are obtained by projecting the reference images onto a simplified object, and then blending the resulting images. Our technique will be effectively used in developing real-time graphics applications such as 3D games and virtual reality software and so on.

Mesh Decimation for Polygon Rendering Based Real-Time 3-Axis NC Milling Simulation (실시간 3축 NC 밀링 시뮬레이션을 위한 메쉬 간략화 방법)

  • Joo, S.W.;Lee, S.H.;Park, K.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.347-358
    • /
    • 2000
  • The view dependency of typical spatial-partitioning based NC simulation methods is overcome by polygon rendering technique that generates polygons to represent the workpiece, thus enabling dynamic viewing transformations without reconstruction of the entire data structure. However, the polygon rendering technique still has difficulty in realizing real-time simulation due to unsatisfactory performance of current graphics devices. Therefore, it is necessary to develop a mesh decimation method that enables rapid rendering without loss of display quality. In this paper. we proposed a new mesh decimation algorithm thor a workpiece whose shape varies dynamically. In this algorithm, the 2-map data thor a given workpiece is divided into several regions, and a triangular mesh is constructed for each region first. Then, if any region it cut by the tool, its mesh is regenerated and decimated again. Since the range of mesh decimation is confined to a few regions, the reduced polygons for rendering can be obtained rapidly. Our method enables the polygon-rendering based NC simulation to be applied to the computers equipped with a wider range of graphics cards.

  • PDF

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.