• Title/Summary/Keyword: Renal tubular

Search Result 283, Processing Time 0.034 seconds

Renal Tubular Acidosis (신세뇨관 산증)

  • Park, Hye-Won
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.120-131
    • /
    • 2010
  • Renal tubular acidosis (RTA) is a metabolic acidosis due to impaired excretion of hydrogen ion, or reabsorption of bicarbonate, or both by the kidney. These renal tubular abnormalities can occur as an inherited disease or can result from other disorders or toxins that affect the renal tubules. Disorders of bicarbonate reclamation by the proximal tubule are classified as proximal RTA, whereas disorders resulting from a primary defect in distal tubular net hydrogen secretion or from a reduced buffer trapping in the tubular lumen are called distal RTA. Hyperkalemic RTA may occur as a result of aldosterone deficiency or tubular insensitivity to its effects. The clinical classification of renal tubular acidosis has been correlated with our current physiological model of how the nephron excretes acid, and this has facilitated genetic studies that have identified mutations in several genes encoding acid and base ion transporters. Growth retardation is a consistent feature of RTA in infants. Identification and correction of acidosis are important in preventing symptoms and guide approved genetic counseling and testing.

Adult Idiopathic Renal Fanconi Syndrome: A Case Report

  • Park, Dae Jin;Jang, Ki-Seok;Kim, Gheun-Ho
    • Electrolytes & blood pressure
    • /
    • v.16 no.2
    • /
    • pp.19-22
    • /
    • 2018
  • Renal Fanconi syndrome (RFS) is caused by generalized proximal tubular dysfunction and can be divided into hereditary and acquired form. Adult-onset RFS is usually associated with drug toxicity or systemic disorders, and modern molecular genetics may explain the etiology of previous idiopathic cases of RFS. Here, we report the case of a 52-year-old woman with RFS whose etiology could not be identified. She presented with features of phosphaturia, renal glucosuria, aminoaciduria, tubular proteinuria, and proximal renal tubular acidosis. Her family history was unremarkable, and previous medications were nonspecific. Her bone mineral density was compatible with osteoporosis, serum intact parathyroid hormone level was mildly elevated, and 25(OH) vitamin D level was insufficient. Her blood urea nitrogen and serum creatinine levels were 8.4 and 1.19 mg/dL, respectively (estimated glomerular filtration rate, $53mL/min/1.73m^2$). Percutaneous renal biopsy was performed but revealed no specific renal pathology, including mitochondrial morphology. No mutation was detected in EHHADH gene. We propose the possibility of involvement of other genes or molecules in this case of adult RFS.

Decursin derivative-004 protect renal cell damage via p38 MAPK inhibition

  • Shin, Seon-Mi;Kim, Hyeon-Ho;Kim, Ik-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.337.1-337.1
    • /
    • 2002
  • Hypertrophy and the alteration of renal cell growth have been reported as early abnormality in diabetic nephropathy. However, the effects ot high PKCglucose and its action mechanism in renal proximal tubular cell (PTC) have not been elucidated. High glucose condition increases diacyl glycerol (DAG) and activates protein kinase C (PKC) in renal tubular cells. The PKC activates mitogen-activated protein kinases (MAPK), such as extracellular regulated kinase (ERK) and p38 MAPK. (omitted)

  • PDF

A Pediatric Case of Long-term Untreated Distal Renal Tubular Acidosis

  • Kedsatha, Philavanh;Shin, Hee Young;Choi, Yong;Cheong, Hae Il;Cho, Tae-Joon;Yi, Eunsang;Maisai, Mayfong
    • Childhood Kidney Diseases
    • /
    • v.24 no.2
    • /
    • pp.115-119
    • /
    • 2020
  • Distal renal tubular acidosis (dRTA) is a rare renal tubular disorder characterized by normal anion gap metabolic acidosis, hypokalemia, and high urine pH. It can be inherited or acquired. In untreated pediatric patients with dRTA, rickets and growth retardation are common. We report the case of a 12-year-old Lao girl who presented with typical clinical features of dRTA with severe bone deformities that developed after a bed-ridden state due to a bicycle accident at the age of 8 years. Initial laboratory tests revealed metabolic acidosis with a normal anion gap, hypokalemia, and alkali urine. Renal ultrasonography revealed bilateral medullary nephrocalcinosis. Whole exome sequencing revealed no pathogenic mutations. After treatment with oral alkali, potassium, and vitamin D, she could walk and run. Later, she underwent corrective orthopedic surgeries for bony deformities. Thus, in pediatric dRTA patients, despite severe symptoms remaining untreated, accurate diagnosis and proper management can improve quality of life.

Relationship of Renal Echogenicity with Renal Pathology and Function

  • Lee, Jin Hee;Cho, Myung Hyun;Chung, Sung Ill;Lim, So Dug;Kim, Kyo Sun
    • Childhood Kidney Diseases
    • /
    • v.21 no.2
    • /
    • pp.47-52
    • /
    • 2017
  • Purpose: Renal ultrasonography has been widely used in children with renal disease. However, the relationship of renal echogenicity with renal pathology and function in children is not well known. Method: Ultrasound examination was performed in 75 patients undergoing renal biopsy for suspected renal disease in Konkuk University Medical Center from August 2005 to November 2015. We compared renal echogenicity to pathologic findings and renal function. Renal echogenicity was scored as 0 to 2 by comparing adjacent liver echogenicity. Three histologic characteristics were evaluated: glomerular changes, interstitial infiltration or fibrosis, and tubular atrophy. These were graded as 0 to 3, according to increasing severity. Laboratory results included urine albumin excretion and estimated glomerular filtration rate (eGFR). Results: Among pathologic findings, renal echogenicity revealed a positive correlation with interstitial infiltration or fibrosis (r=0.259, P=0.025), and with tubular atrophy (r=0.268, P=0.02). Renal echogenicity and glomerular changes were not correlated. Renal echogenicity showed a positive correlation with microalbuminuria (r=0.283, P=0.014), but a negative correlation with eGFR (r=-0.352, P=0.002). Conclusion: Increased renal echogenicity suggested severe interstitial infiltration or fibrosis and tubular atrophy among the pathologic findings. Moreover, increased echogenicity is correlated with increased urine albumin excretion and decreased eGFR. Echogenicity on ultrasonography is useful for determining the status of renal pathology and function.

Expression of Tubular Intercellular Adhesion Molecule-1 (ICAM -1) as a Marker of Renal Injury in Children with IgA Nephropathy (소아 특발성 IgA 신병증에서 신 손상의 예후 인자로서 신세뇨관 ICAM-1의 발현)

  • Son Young-Ho;Kang Mi-Seon;Chung Woo-Yeong
    • Childhood Kidney Diseases
    • /
    • v.8 no.2
    • /
    • pp.149-158
    • /
    • 2004
  • Purpose : In order to evaluate the value of the renal expression of ICAM-1 as a marker of renal injury, we analyzed the relationship between abnormal tubular expression of ICAM-1 and histopathological features and clinical manifestations in children with IgA nephropathy (IgAN). Methods: The clinical data from 43 patients with IgAN were analyzed retrospectively and compared to the histopathologic subclassification proposed by Haas. ICAM-1 in tubular epithelium was assessed using the LSAB(Labeled streptavidine biotin) kit on the renal biopsy specimens. Results: In 43 patients with primary IgAN, 28 males and 15 females aged $12.2{\pm}2.2$ years were studied. There were no differences of renal tubular expression of ICAM-1 between patients with gross hematuria and without gross hematuria. But renal tubular expression of ICAM-1 in patients with proteinuria was significantly higher than that of in patients without proteinuria($78.2{\pm}14.19%\;vs\;55.8{\pm}32.20%,\;P<0.05$). Renal tubular expression of ICAM-1 was also associated with the severity of histopathological degree using Haas classification method. In subclass I, renal tubular expression of ICAM-1 was significantly lower than those of other subclasses. A significant correlation was found between the tubular expression of ICAM-1 and the total amount of protein in 24 hour collected urine$(r_s=0.47236,\;p<0.05)$. But there were no significant correlations between the renal tubular expression of ICAM-1 and interstitial cellular infiltration, tubular atrophy, and interstitial fibrosis respectively(F=0.89, P>0.05; F=0.31, p>0.05; F=0.21, p>0.05). Conclusion: Renal tubular expression of ICAM-1 can be a useful marker of renal injury in children with IgAN. (J Korean Soc Pediatr Nephrol 2004;8:149-158)

  • PDF

Changes in Renal Brush-Border Sodium-Dependent Transport Systems in Gentamicin-Treated Rats

  • Suhl, Soong-Yong;Ahn, Do-Whan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.403-411
    • /
    • 1997
  • To elucidate the mechanism of gentamicin induced renal dysfunction, renal functions and activities of various proximal tubular transport systems were studied in gentamicin-treated rats (Fisher 344). Gentamicin nephrotoxicity was induced by injecting gentamicin sulfate subcutaneously at a dose of 100 $mg/kg{\cdot}day$ for 7 days. The gentamicin injection resulted in a marked polyuria, hyposthenuria, proteinuria, glycosuria, aminoaciduria, phosphaturia, natriuresis, and kaliuresis, characteristics of aminoglycoside nephropathy. Such renal functional changes occurred in the face of reduced GFR, thus tubular transport functions appeared to be impaired. The polyuria and hyposthenuria were partly associated with a mild osmotic diuresis, but mostly attributed to a reduction in free water reabsorption. In renal cortical brush-border membrane vesicles isolated from gentamicin-treated rats, the $Na^+$ gradient dependent transport of glucose, alanine, phosphate and succinate was significantly attenuated with no changes in $Na^+-independent$ transport and the membrane permeability to $Na^+$. These results indicate that gentamicin treatment induces a defect in free water reabsorption in the distal nephron and impairs various $Na^+-cotransport$ systems in the proximal tubular brush-border membranes, leading to polyuria, hyposthenuria, and increased urinary excretion of $Na^+$ and other solutes.

  • PDF

Effects of Human Adipose-Derived Stem Cells in Regenerating the Damaged Renal Tubular Epithelial Cells in an Animal Model of Cisplatin-Induced Acute Kidney Injury

  • Kim, Saeyoon;Lee, Eung Bin;Song, In Hwan;Kim, Yong Jin;Park, Hosun;Kim, Yong Woon;Han, Gi Dong;Kim, Kyung Gon;Park, Yong Hoon
    • Childhood Kidney Diseases
    • /
    • v.19 no.2
    • /
    • pp.89-97
    • /
    • 2015
  • Background: We conducted this experimental study to examine whether human adipose-derived stem cells (ADSCs) are effective in achieving a recovery of damaged renal tubular epithelial cells in an animal model of cisplatin-induced acute kidney injury using rats. Methods: To examine the in vitro effects of ADSCs in improving nephrotoxicity, we treated mouse renal tubular epithelial cells with both ADSCs and cisplatin mouse renal tubular epithelial cells. And we equally divided 30 male white Sprague-Dawley (SD) rats into the three groups: the control group (intraperitoneal injection of a sterile saline), the cisplatin group (intraperitoneal injection of cisplatin) and the ADSC group (intraperitoneal injection of cisplatin and the hADSC via the caudal vein). At five days after the treatment with cisplatin, serum levels of blood urine nitrogen (BUN) and creatinine were measured from each SD rat. We performed histopathologic examinations of tissue samples obtained from the kidney. Results: The degree of the expression of TNF-${\alpha}$ and that of Bcl-2 were significantly higher and lower respectively, in cisplatin group (P<0.05). Serum levels of BUN (P=0.027) and creatinine (P=0.02) were significantly higher in cisplatin group. On histopathologic examinations, there was a significant difference in the ratio of the renal injury between cisplatin group and ADSC group (P=0.002). Conclusion: The ADSCs might have a beneficial effect in regenerating the damaged renal tubular epithelial cells.

Effects of long-term tubular HIF-2α overexpression on progressive renal fibrosis in a chronic kidney disease model

  • Dal-Ah Kim;Mi-Ran Lee;Hyung Jung Oh;Myong Kim;Kyoung Hye Kong
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.196-201
    • /
    • 2023
  • Renal fibrosis is the final manifestation of chronic kidney disease (CKD) regardless of etiology. Hypoxia-inducible factor-2 alpha (HIF-2α) is an important regulator of chronic hypoxia, and the late-stage renal tubular HIF-2α activation exerts protective effects against renal fibrosis. However, its specific role in progressive renal fibrosis remains unclear. Here, we investigated the effects of the long-term tubular activation of HIF-2α on renal function and fibrosis, using in vivo and in vitro models of renal fibrosis. Progressive renal fibrosis was induced in renal tubular epithelial cells (TECs) of tetracycline-controlled HIF-2α transgenic (Tg) mice and wild-type (WT) controls through a 6-week adenine diet. Tg mice were maintained on doxycycline (DOX) for the diet period to induce Tg HIF-2α expression. Primary TECs isolated from Tg mice were treated with DOX (5 ㎍/ml), transforming growth factor-β1 (TGF-β1) (10 ng/ml), and a combination of both for 24, 48, and 72 hr. Blood was collected to analyze creatinine (Cr) and blood urea nitrogen (BUN) levels. Pathological changes in the kidney tissues were observed using hematoxylin and eosin, Masson's trichrome, and Sirius Red staining. Meanwhile, the expression of fibronectin, E-cadherin and α-smooth muscle actin (α-SMA) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was observed using western blotting. Our data showed that serum Cr and BUN levels were significantly lower in Tg mice than in WT mice following the adenine diet. Moreover, the protein levels of fibronectin and E-cadherin and the phosphorylation of p38 MAPK were markedly reduced in the kidneys of adenine-fed Tg mice. These results were accompanied by attenuated fibrosis in Tg mice following adenine administration. Consistent with these findings, HIF-2α overexpression significantly decreased the expression of fibronectin in TECs, whereas an increase in α-SMA protein levels was observed after TGF-β1 stimulation for 72 hr. Taken together, these results indicate that long-term HIF-2α activation in CKD may inhibit the progression of renal fibrosis and improve renal function, suggesting that long-term renal HIF-2α activation may be used as a novel therapeutic strategy for the treatment of CKD.

Angiotensin receptor blocker induced fetopathy: two case reports and literature review

  • Jinwoon Joung;Heeyeon Cho
    • Childhood Kidney Diseases
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2023
  • The administration of angiotensin type 2 receptor blockers (ARBs) during pregnancy is known to cause ARB fetopathy, including renal insufficiency. We aimed to analyze the outcomes of two patients who survived ARB fetopathy and perform an accompanying literature review. Case 1 was exposed antenatally from a gestational age of 30 weeks to valsartan because of maternal pregnancy-induced hypertension. The patient presented with oliguria immediately after birth, and renal replacement therapy was administered for 24 days. Seven years after birth, renal function was indicative of stage 2 chronic kidney disease (CKD) with impaired urinary concentration. Case 2 had a maternal history of hypertension and transient ischemic attack and was treated with olmesartan until 30 weeks of pregnancy. Renal replacement therapy was performed for 4 days since birth. After 8 years, the patient is with CKD stage 2, with intact tubular function. Recent reports suggest that ARB fetopathy might manifest as renal tubular dysgenesis and nephrogenic diabetes insipidus, in contrast to mild alterations of glomerular filtration. Tubular dysfunction may induce CKD progression and growth retardation. Patients with ARB fetopathy should be monitored until adulthood. The ARB exposure period might be a critical factor in determining the severity and manifestations of fetopathy.