• 제목/요약/키워드: Remove efficiency

검색결과 1,021건 처리시간 0.023초

생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구 (Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter)

  • 박찬규;조은영;김영희;박성진
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

분말 흡착제를 이용한 악취 저감 여과 집진장치 개발연구 (Odor Removal with Powdered Adsorbent using Bag-filter System)

  • 허영빈;김태형;하현철;박승욱
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.291-301
    • /
    • 2017
  • Objectives: In order to improve the working environment and solve the complaints, many efforts have been made to remove the odor from the industrial process. There are many disposal methods to remove odor, but there are many disadvantages and inadequate applications. The Purpose of this study was to develop a bag-filer system for odor removal using powder adsorbent. Methods: The bag-filter system is composed of a shear bag filter, an absorbent spraying system and an absorbent circulation system. The spraying absorbent system was connected with the inlet duct of the shear bag filter for inputting adsorbent. And the absorbent circulation system can transport the collecting adsorbent from hoper to the inlet duct of the system. As a result, the adsorbent can remove odor with recycling in the system. Also affective factors like the powdered absorbent combination and injection method was researched for maximization of system efficiency. The study was conducted in two stages. The first step was testing equipment made and the second is to evaluate the efficiency of the odor control by connecting to the actual odor generation process. Results: Both experiment stages showed efficient odor control ability. The adsorption efficiency of the system is demonstrated and the odor was adsorbed well by the powder adsorbent. It is essential to accurately understand the characteristics of the odorous and use the appropriate adsorbent. Although the powder adsorbent was used in the experiment, the problem of scattering did not occur due to the high degree of system sealing. Also the system manufactured in this study was designed to recycle the adsorbent, so adsorbent reuse or batch processing is convenient. Conclusions: The applicability of the system has been proven through this research. Customized systems for industrial process and the appropriate adsorbent base on the characteristics of pollutant generation will show efficient odor collection ability.

오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구 (A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon)

  • 배현주;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF

DAF 공정에서 부상속도 향상을 위한 플럭형성 조건 평가 (Evaluation of Floc Formation Conditions for Increasing Flotation Velocity in DAF Process)

  • 권순범;민진희;박노석;안효원
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.245-255
    • /
    • 2006
  • Dissolved air flotation is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In order to enhance the flotation velocity and removal efficiency of flocs in the flotation process, we tried to obtain pretreatment conditions for the optimum DAF process operation by comparing and evaluating features of actual floc formation and flotation velocity etc, according to coagulant types and conditions for flocculation mixing intensity by using PIA, PDA, and FSA. Accordingly, generating big flocs that have low density at low flocculation mixing intensity may reduce treatment efficiency. In addition, generating small flocs at high flocculation mixing intensity makes floc-bubbles smaller, which reduces flotation velocity, In this study, it was found that high flocculation mixing intensity could not remove the remaining micro-particles after flocculation, which had negative effects on treated water quality, Therefore, in order to enhance treatment efficiency in a flotation process, flocculation mixing intensity around $50sec^{-1}$ is effective.

습식세정탑 내 악취가스 제거를 위한 복합흡수제의 효율 특성 (Efficiency Characteristics by Mixed Absorbents for the Removal of Odor Compounds in the Wet Scrubber)

  • 박영규;김정인
    • 공업화학
    • /
    • 제22권1호
    • /
    • pp.48-55
    • /
    • 2011
  • 아민계열 화학흡수제와 다른 화합물과의 혼합용액이 중화반응을 통해 악취가스를 제거하는 사실이 알려져 왔다. 이러한 혼합용액 중 식물추출물의 식물정유 성분은 그 자체로 만으로도 악취가스 20~40% 이상 제거능을 가지며 0.2% 아민계열 흡수제와의 혼합용액은 악취가스의 98% 이상의 제거효율을 갖는 것으로 나타났다. 악취가스인 암모니아가스와 황화수소가스를 제거하기 위해 온도와 pH 운전조건에 따라 식물정유물질과 아민계열의 화학흡수제 등을 이용하여 적정운전조건을 위한 실험을 수행하였다. 식물정유 성분 중 모노테르펜의 성분을 분석하기 위하여 GC-MS분석방법을 사용하였으며 그들의 반응메카니즘의 일부가 규명되었다.

유동상 생물막법을 적용한 BNR공법에서의 인제거 영향인자 (Factors affecting Phosphorus removal in BNR process applied Moving Bed Biofilm)

  • 박운지;김동욱;이찬기
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.3-10
    • /
    • 2006
  • In this study, the of MBBR(moving bed biofilm reactor) process for Phosphorus Removal efficiency depending on seasons and the factors affecting phosphorus removal efficiency in the process is evaluated. As a result of experiment, T-P removal efficiency has its highest value in winter, (80.8%). and T-P removal efficiency has its lowest value in autumn, (49%). Optimum SRT for Phosphorus Removal revealed is about 8.8 days and process performs more efficiently as the temperature decreases. It is accepted that nitrate to anaerobic zone is affecting the Phosphorus removal process. With increasing the organic loading rate, Phosphorus removal efficiency also increases. Also, an experiment has been conducted to find out the highest efficiency according to Media existence and it has revealed that Media addition provides better phosphate removal.

  • PDF

멀티 선회류식 세정장치를 이용한 고효율 하이브리드 VOCs 습식처리 SYSTEM 개발 (Development of VOCs Treatment Technology using High Efficiency Hybrid System with Multi-Scrone)

  • 임성일;김로중;김선미;이성훈;김선욱;장원석;박대원;김래현;김재형
    • 대한환경공학회지
    • /
    • 제31권7호
    • /
    • pp.491-498
    • /
    • 2009
  • 본 연구에서는 환경기초시설과 정유공장, 도장시설 등에서 발생하는 악취 및 휘발성 유기화합물(VOCs:Volatile Organic Compounds)을 처리하는데 주로 사용되는 RTO와 RTO를 대체할 수 있는 중저가의 고효율 처리기술을 개발하고자 하였다. toluene, xylene, benzene, MEK, ethanol, hydrogen sulfide, formalin 등을 처리대상 VOCs와 악취물질로 선정하고 처리방식은 1차로 선회류식 세정장치를 이용하여 친수성의 악취 및 VOCs를 제거하고 2차로 섬유상 바이오필터를 이용하여 친수성 VOCs 뿐만 아니라 소수성 VOCs를 모두 효율적으로 처리하는 하이브리드 기술을 개발하는 동시에 VOCs 처리장치의 크기를 컴팩트하게 하는데 주안점을 두었다. 선회류식 세정장치에서 첩족시간을 2~3초로하고 세정수를 비격막식 전해수로 사용하였을 때 친수성 VOCs 물질인 ethanol과 상대적으로 친수성 악취물질인 hydrogen sulfide는 각각 95~99%, 93~97%로 거의 완벽하게 제거되었다. 또한 MEK, formalin의 처리효율은 각각 78~90%, 72~85%로 높은 제거효과를 나타내었다. 반면에 소수성 물질인 toluene, xylene, benzene에 대한 선회류식 세정장치의 처리효율은 각각 16~22%, 12~18%, 8~16%으로 낮게 나타났다. 하지만 일정한 처리효율을 계속 유지함을 확인할 수 있었다. 섬유상 바이오필터는 toluene의 경우 초기에는 처리효율이 좋지 않았지만 순응기간인 7~10일정도가 지난 이후부터는 미생물 분해처리를 통해 70% 이상의 제거율을 보였으나 이후 85~95%의 처리효율을 보였다. 하지만 MEK가 혼합된 단계에서는 5~10%정도의 처리효율 감소경향을 나타내었는데 이는 미생물들이 처리하기 쉬운 MEK를 우선 처리하는 성향때문이라고 사료된다. MEK에 대한 섬유상 바이오필터의 처리효율은 80~92%로 안정적인 처리효율을 보였다. 경제성 측면에서도 소각방법인 RTO 대비 시설비 및 유지관리비를 절감할 수 있어 중, 저가 VOCs 처리기술로 각광받을 것으로 사료된다.

상온 펄스 코로나 방전 공정에 의한 NO 제거 효율 (NO Removal Efficiency by Pulsed Corona Discharge Process at Room Temperature)

  • 김동주;박정환;김교선
    • 한국대기환경학회지
    • /
    • 제18권5호
    • /
    • pp.337-344
    • /
    • 2002
  • In this study, we analyzed the NO removal efficiency by the pulsed corona discharge process and investigated the effects of several process variables such as initial concentrations of NO, $H_2O$, and NH$_3$, applied voltage, pulse frequency, diameter of the discharge electrode, and residence time. The removal efficiency of NO increased by the addition of $H_2O$ or NH$_3$, but the changes of initial NH$_3$ and $H_2O$ concentrations did not affect the removal efficiency of NO significantly. With the increases of the applied voltage or the residence time, the removal efficiency of NO increased. In addition, with the increases of the pulse frequency of applied voltage, or the diameter of the discharge electrode, the removal efficiency of NO increased. The experimental results can be used as a basis to design the pulsed corona discharge process to remove NO$_{x}$, SO$_{x}$ and VOCs.OCs.

CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증 (Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification)

  • 김혜민;권성안;이상준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

Bacillus drentensis sp. 사균과 polysulfone으로 이루어진 미생물담체를 이용한 수용액 내 벤젠 제거 (Removal of Benzene in Solution by using the Bio-carrier with Dead Bacillus drentensis sp. and Polysulfone)

  • 박상희;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.46-56
    • /
    • 2013
  • Laboratory scale experiments to remove benzene in solution by using the bio-carrier composed of dead biomass have been performed. The immobilized bio-carrier with dead Bacillus drentensis sp. and polysulfone was manufactured as the biosorbent. Batch sorption experiments were performed with bio-carriers having various quantities of biomass and then, their removal efficiencies and uptake capacities were calculated. From results of batch experiments, 98.0% of the initial benzene (1 mg/L) in 1 liter of solution was removed by using 40 g of immobilized bio-carrier containing 5% biomass within 1 hour and the biosorption reaction reached in equilibrium within 2 hours. Benzene removal efficiency slightly increased (99.0 to $99.4%{\pm}0.05$) as the temperature increased from 15 to $35^{\circ}C$, suggesting that the temperature rarely affects on the removal efficiency of the bio-carrier. The removal efficiency changed under the different initial benzene concentration in solution and benzene removal efficiency of the bio-carrier increased with the increase of the initial benzene concentration (0.001 to 10 mg/L). More than 99.0% of benzene was removed from solution when the initial benzene concentration ranged from 1 to 10 mg/L. From results of fitting process for batch experimental data to Langmuir and Freundlich isotherms, the removal isotherms of benzene were more well fitted to Freundlich model ($r^2$=0.9242) rather than Langmuir model ($r^2$=0.7453). From the column experiment, the benzene removal efficiency maintained over 99.0% until 420 pore volumes of benzene solution (initial benzene concentration: 1 mg/L) were injected in the column packed with bio-carriers, investigating that the immobilized carrier containing Bacillus drentensis sp. and polysulfone is the outstanding biosorbent to remove benzene in solution.