• Title/Summary/Keyword: Removal torque test

Search Result 59, Processing Time 0.028 seconds

Combined effects of rhBMP-2 and rhVEGF coated onto implants on osseointegration: pilot study (양극산화 임플란트 표면에 적용된 골형성단백질과 혈관내피세포성장인자가 골유착에 미치는 영향: 예비연구)

  • Huh, Jung-Bo;Yun, Mi-Jung;Jeong, Chang-Mo;Shin, Sang-Wan;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • Purpose: The present study is aimed to evaluate the combined effect of recombinant human bone morphogenetic protein 2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) coated onto anodized implants on osseointeration. Materials and methods: Six New Zealand white rabbit were used in this study. Each animal received 4 implants that were either coated with rhBMP-2 and rhVEGF (Study group) or anodized implant (Control group) in both tibia. This was performed using a randomized split-mouth design. A total 24 implants were used. The implant stability quotient (ISQ) value using resonance frequency analyser and removal torque (RTQ) measurement were investigated at 2 and 8 weeks. The t-test was used for statistical analysis (${\alpha}$=.05). Results: Control and study group showed good osseointegration at 8 weeks. The ISQ and RTQ values of study group were significant compared with the control group at 8 weeks (P<.05). However, No statistical significance was observed at 2 weeks (P>.05). Conclusion: It was concluded that rhBMP-2 with rhVEGF coated onto anodized implants can induce better osseointegration at late healing period.

Stability of the prosthetic screws of three types of craniofacial prostheses retention systems

  • Lanata-Flores, Antonio Gabriel;Sigua-Rodriguez, Eder Alberto;Goulart, Douglas Rangel;Bomfim-Azevedo, Veber Luiz;Olate, Sergio;de Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.6
    • /
    • pp.352-357
    • /
    • 2016
  • Objectives: This study aimed to evaluate the stability of prosthetic screws from three types of craniofacial prostheses retention systems (bar-clip, ball/O-ring, and magnet) when submitted to mechanical cycling. Materials and Methods: Twelve models of acrylic resin were used with implants placed 20 mm from each other and separated into three groups: (1) bar-clip (Sistema INP, São Paulo, Brazil), (2) ball/O-ring (Sistema INP), and (3) magnet (Metalmag, São Paulo, Brazil), with four samples in each group. Each sample underwent a mechanical cycling removal and insertion test (f=0.5 Hz) to determine the torque and the detorque values of the retention screws. A servo-hydraulic MTS machine (810-Flextest 40; MTS Systems, Eden Prairie, MN, USA) was used to perform the cycling with 2.5 mm and a displacement of 10 mm/s. The screws of the retention systems received an initial torque of 30 Ncm and the torque values required for loosening the screw values were obtained in three cycles (1,080, 2,160, and 3,240). The screws were retorqued to 30 Ncm before each new cycle. Results: The sample was composed of 24 screws grouped as follows: bar-clip (n=8), ball/O-ring (n=8), and magnet (n=8). There were significant differences between the groups, with greater detorque values observed in the ball/O-ring group when compared to the bar-clip and magnet groups for the first cycle. However, the detorque value was greater in the bar-clip group for the second cycle. Conclusion: The results of this study indicate that all prosthetic screws will loosen slightly after an initial tightening torque, also the bar-clip retention system demonstrated greater loosening of the screws when compared with ball/O-ring and magnet retention systems.

SURFACE CHANCE OF EXTERNAL HEXAGON OF IMPLANT FIXTURE AND INTERNAL HEXAGON OF ABUTMENT AFTER REPEATED DELIVERY AND REMOVAL OF ABUTMENT (지대주의 반복적인 착탈에 따른 임플랜트 고정체의 external hexagon과 지대주 internal hexagon의 변화에 관한 연구)

  • Jung Seok-Won;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.528-543
    • /
    • 2005
  • Statement of problem: Repeated delivery and removal of abutment cause some changes such as wear, scratch or defect of hexagonal structure. It may increase the value of rotational freedom(RF) between hexagonal structures. Purpose: The purpose of this study was to evaluate surface changes and rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment after repeated delivery and removal under SEM and toolmaker's microscope. Materials and methods: Implant systems used for this study were 3i and Avana. Seven pail's of implant fixture, abutment and abutment screws for each system were selected and all fixtures were perpendicularly mounted in liquid unsaturated polyesther with dental surveyor. Each one was embedded beneath the platform of fixture. Surfaces of hexagonal structure before repeated closing and opening of abutment were observed using SEM and rotational freedom was measured by using toolmaker's microscope. Each abutment was secured to the implant future by each abutment screw with recommended torque value using a digital torque controller and was repeatedly delivered and removed by 20 times respectively. After experiment, evaluation for the change of hexagonal structures and measurement of rotational freedom were performed. Result : The results were as follows; 1. Wear of contact area between implant fixture and abutment was considerable in both 3i and Avana system. Scratches and defects were frequently observed at the line-angle of hexagonal structures of implant fixture and abutment. 2. In the SEM view of the external hexagon of implant fixture, the point-angle areas at the corner edge of hexagon were severely worn out in both systems. It was more notable in the case of 3i systems than in that of Avana systems. 3. In the SEM view of the internal hexagon of abutment, Gingi-Hue abutment of 3i systems showed severe wear in micro-stop contacts that were machined into the corners to prevent rotation and cemented abutment of Avana systems showed wear in both surface area adjacent to the corner mating with external hexagon of implant fixture. 4 The mean values of rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment were 0.48$\pm$0.04$^{\circ}$ in pre-tested 3i systems and 1.18$\pm$0.25$^{\circ}$ after test, and 1.80$\pm$0.04$^{\circ}$ in pre-tested Avana systems and 2.61$\pm$0.16$^{\circ}$ after test. 5. Changes of rotational freedom after test shouted statistical)y a significant increase in both 3i and Avana systems(P<0.05, paired t-test). 6. Statistically, there was no significant difference between amount of increase in the rotational freedom of 3i systems and amount of increase in that of Avana ones(P>0.05, unpaired t-test). Conclusion: Conclusively, it was considered that repeated delivery and remove of abutment by 20 times would not have influence on screw joint stability. However, it caused statistically the significant change of rotational freedom in tested systems. Therefore, it is suggested that repeated delivery and remove of abutment should be minimal as possible as it could be and be done carefully Additionally, it is suggested that the means or treatment to prevent the wear of mating components should be devised.

The effect of a titanium socket with a zirconia abutment on screw loosening after thermocycling in an internally connected implant: a preliminary study (내부연결 임플란트용 타이타늄 소켓을 이용한 지르코니아 지대주에서 열순환이 나사풀림에 미치는 영향: 예비연구)

  • Kyung, Kyu-Young;Cha, Hyun-Suk;Lee, Joo-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.114-118
    • /
    • 2017
  • Purpose: The aim of this study was to investigate the effects of a titanium component for the zirconia abutment in the internal connection implant system on screw loosening under thermocycling conditions. Materials and Methods: Internal connection titanium abutments and external connection zirconia abutments with titanium sockets were connected respectively to screw-shaped internal connection type titanium implants with 30 Ncm tightening. These implant-screw-abutment assemblies were divided into two groups of five specimens each; titanium abutments as control and zirconia abutments with titanium sockets as experimental group. The specimens were subjected to 2,000 thermocycles in water baths at $5^{\circ}C$ and $55^{\circ}C$, with 60 seconds of immersion at each temperature. The removal torque values (RTVs) of the abutment screws of the specimen were measured before and after thermocycling. RTVs pre- and post-thermocycling were investigated in statistics. Results: There was not screw loosening identified by tactile and visual inspection in any of the specimens during or after thermocycling. The mean RTV difference for the control group and the experimental group were $-1.34{\pm}2.53Ncm$ and $-1.26{\pm}2.06Ncm$, respectively. Statistical analysis using an independent t-test revealed that no significant differences were found in the mean RTV difference of the groups (P > 0.05). Conclusion: Within the limitations of this in vitro study, the titanium socket for the zirconia abutment did not show a significant effect on screw loosening under thermal stress compared to the titanium abutment in the internal connection implant.

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

Removal Torque and Histometric Evaluations of Implants with Various Area of Hydroxyapatite Coating Placed in the Rabbit Tibia (토끼 경골에서 hydroxyapatite 코팅의 면적에 따른 임프란트의 뒤틀림 제거력과 조직계측학적 분석)

  • Moon, Sang-Kwon;Cho, Kyoo-Sung;Ahn, Sae-Youn;Lee, Hoon;Kim, Han-Sun;Shim, June-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.625-641
    • /
    • 2003
  • Background: This study presents a biomechanical and histometric comparison of bone response to implants with various area of hydroxyapatite(HA) coating. Methods: The implants were placed in the tibia of 10 rabbits weighing 2.5-3.5kg. The control group had a machined surface, the experimental group 1 had 50${\mu}m$ thick HA coated in a band form, and the experimental group 2 had 50${\mu}m$ thick HA coated on the entire surface. 8 weeks after implantation, the animals were sacrificed. Removal torque was measured and histologic preparation was also performed for histologic and histometric analysis. Bone to implant contact as well as percentage of bone area inside threads were measured. ANOVA post hoc, and t-test were used for statistical analysis with p-value p<0.05. Results: 1. The removal torques were 9.36${\pm}$5.64 Ncm, 48.40 ${\pm}$ 16.66 Ncm, and 82.37${\pm}$22.56 Ncm for the control, exp. 1, and exp. 2 group respectively. Statistically significant difference were found among all the groups(p<0.05). 2. Bone to implant contact in the cortical bone were 38.94${\pm}$10.9 %, 66.90${\pm}$14.1 %, 73.00${\pm}$19.4 %, in the marrow bone, 8.30${\pm}$5.4%, 14.59${\pm}$5.9%, 18.54${\pm}$11.8%, and in total, 22.40${\pm}$10.1%, 31,17${\pm}$7.5%, 41.41${\pm}$12.2% for the control, exp. 1, and exp. 2 group respectively . In the cortical bone, exp. 1, and exp. 2 group showed statistically significantly higher contact compared to control group. Total contact and in the marrow bone, only exp. 2 group showed statistically significantly higher contact compared to control group(p<0.05). In all the groups significantly higher contact were observed in the cortical bone compared to the marrow bone(p<0.05). 3. Percentage of bone area inside threads in the cortical bone were 55.68${\pm}$7.25%, 55.19${\pm}$13.19%, 57.04${\pm}$13.33%, in the marrow bone, 12.34${\pm}$14.61%, 17.56${\pm}$20.04%, 20.26${\pm}$12.83%, and in total, 30.30${\pm}$12.46%, 31.57 ${\pm}$15.15%, 34.25${\pm}$12.56% for the control, exp.1, and exp. 2 group respectively. There was no statistical difference among the groups. In all the groups significantly higher bone area were observed in the cortical bone compared to the marrow bone(p<0.05)

ON THE SURFACE CHARACTERISTICS AND STABILITY OF IMPLANT TREATED WITH ANODIZING OXIDATION (양극산화 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Kim, Won-Sang;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2006
  • Purpose : This experiment examined the effects of anodization on commercially pure titanium implant fixtures. Material & methods : The implant fixtures were anodized at three different voltage levels, producing three different levels of oxidation on the surface of the fixure. Implant were divided into four groups according to the level of oxidation. Group 1 consist of the control group of machined surface implants, Group 2 implants were treated by anodizing to 100 voltage, Group 3 implants were treated by anodizing oxidation to 200 voltage Group 4 implants were treated by anodizing oxidation to 350 voltage. Surface morphology was observed by Scanning Electron Microscope(SEM) and the surface roughness was measured using NanoScan $E-1000^{\circledR}$. Implantation of the fixtures were performed using New Zealand white rabbits. $Periotest^{\circledR}$ value(PTV) resonance frequency analysis(RFA), and removal torque were measured in 0, 2, 4, 8, 12 weeks after implantation. Results : The results of the study were as follows: 1. Values for the measured surface roughness indicate statistically significant differences in Ra, Rq, and Rt values among group 1, 2, 3, and 4 at the top portion of the thread,(p<0.05) while values at the base of the threads indicated no significant difference in these values. 2. A direct correlation between the firming voltage, and surface roughness and irregularities were observed using scanning electron microscope. 3. No statistically significant differences were found between test groups regarding $Periotest^{\circledR}$ values. 4. Analysis of the data produced by RFA, significant differences were found between group 1 and group 4 at 12 weeks after implantation.(p<0.05) Conclusions : In conclusion, no significant differences could be found among test groups up to a certain level of forming voltage threshold, beyond this firming voltage threshold, statistically significant differences occurred as the surface area of the oxide layer increased with the increase in surface porosity, resulting in enhanced bone response and osseointegration.

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

  • Nepal, Manoj;Li, Liang;Bae, Tae Sung;Kim, Byung Il;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.563-569
    • /
    • 2014
  • Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.

A Study on the Surface Roughness and Initial Stability of Various Dental Implants (수종 임플랜트의 표면 거칠기와 초기안정성에 관한 연구)

  • Cho, Dong-Hoon;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.197-210
    • /
    • 2000
  • Surface roughness is one of implant surface topography and it's found that surface roughness characterizations, such as surface energy, oxide layer thickness and its chemical composition, are closely correlated if the roughness is changed. Several studies showed the importance of analyzing surface structure so the surface structure of thread implant was analyzed to measure the implant quality exactly. In this study, surface roughness of 4 implants - MK $II^{(R)}$(Nobel Biocare), $RBM^{(R)}$(Life-Core, USA), $Osseotite^{(R)}$(3i, USA), $TPS^{(R)}$(Life-Core, USA) - were measured using $Accura^{(R)}$ and 40 implants were installed into 4 sets of ten bovine ribs based on the parameters from the measurements. From this test, the following conclusions for the initial stability were drawn by measuring and comparing RFA, Periotest Value (PTV), Removal Torgue Value (RTV). 1. $R_a$ value in surface roughness measurement was increasing by the order of $MKII^{(R)}$, $Osseotite^{(R)}$, $RBM^{(R)}$, $TPS^{(R)}$ and $R_q$ value was the same order. 2. $R_q$ value in each section was observed to increase by the order of $MKII^{(R)}$, $Osseotite^{(R)}$, $RBM^{(R)}$, $TPS^{(R)}$ in top and $MKII^{(R)}$, $RBM^{(R)}$, $Osseotite^{(R)}$, $TPS^{(R)}$ in mid-section but the value of $MKII^{(R)}$ bottom was the lowest, followed by $Osseotite^{(R)}$, $RBM^{(R)}$ and $TPS^{(R)}$. 3. RFA increased by the order of $RBM^{(R)}$(7042Hz), $MKII^{(R)}$(7047Hz), $Osseotite^{(R)}$(7076Hz), $TPS^{(R)}$(7168Hz) and there was no significance between each group. 4. PTV was increasing by the order of $MKII^{(R)}$(-1.62), $TPS^{(R)}$(-1.92), $Osseotite^{(R)}$ & $RBM^{(R)}$(-2.08) and there was no significance, either. 5. Removal torque in RTV measurement showed the increasing order of $MKII^{(R)}(5.31kgf{\cdot}cm)$, $Oeeotite^{(R)}(5.71kgf{\cdot}cm)$, $TPS^{(R)}(5.92kgf{\cdot}cm)$ and $RBM^{(R)}(7.24kgf{\cdot}cm)$ and there was no significance among groups. Above observations explains that surface roughness does not make any impact on the initial stability of implants installation.

  • PDF