• Title/Summary/Keyword: Removal process

Search Result 4,458, Processing Time 0.046 seconds

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

Long-term Behavior of Deck-plate Concrete Slab Reinforced with Steel Fiber (강섬유 보강 데크플레이트 콘크리트 슬래브의 장기 거동)

  • Hong, Geon-Ho;Hwang, Seung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2017
  • Recently, research on the development of a composite slab system for shorting the construction period by simplifying the process by omitting the form work and the reinforcement placing is underway. The purpose of this study is to evaluate the long-term behavior of a simplified slab system that replaces the form work and tensile reinforcement using structural deck-plate and replaces the temperature reinforcement using steel fiber reinforced concrete. In the conventional composite deck-plate slab method, w.w.f is generally used for crack control by drying shrinkage. But previous research results by various researchers were pointed out it is not effective to control the shrinkage and temperature cracking. In this study, the long-term cracking and structural behavior of steel fiber reinforced deck plate slab specimen with two continuous spans constructed under typical load conditions were evaluated. Experimental results showed that the number and width of long-term cracks decreased remarkably in the simplified slab specimen, and the deflection was also decreased compared with conventional RC slab specimen. However, in the continuous end of the slab where the negative moment is applied, it is analyzed that reinforced details are necessary to control the crack width in the service load and to recover deflection at load removal.

Detection of Perchlorate in Nakdong River and Removal Characteristics of Perchlorate by Granular Activated Carbon Process (낙동강 수계에서의 Perchlorate 검출 및 활성탄 공정에 의한 제거특성)

  • Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.438-443
    • /
    • 2007
  • This study was done to investigate perchlorate contamination in Nakdong river. The perchlorate was detected in Nakdong river and ranged from ND to $82.1{\mu}g/L$. The highest concentration was observed in Wheguan. The perchlorate concentration was decreased with the down stream of Nakdong river. Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of perchlorate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of coal, coconut and wood based AC as 2,300 bed volumn(BV), 719 BV and 288 BV respectively. Adsorption capacity(X/M) of real, coconut and wood based AC was observed. The experimental results of adsorption capacity showed that coal based AC was highest$(768.2{\mu}g/g)$, coconut based AC was intermediate$(299{\mu}g/g)$ and wood based AC was lowest$(99.2{\mu}g/g)$. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.71 g/day, 2.16 g/day and 3.45 g/day respectively. The constant characteristic of the system, k of coal, coconut and wood based ACs were found to be 307.2, 102.5 and 94.2, respectively.

Effects of Sorbed Surfactant on the Surfactant-Enhanced Removal of Hydrophobic Organic Contaminants (토양에 흡착된 계면활성제가 유기오염물 제거에 미치는 영향)

  • 고석오;유희찬
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 1999
  • Partitioning of two hydrophobic organic compounds (HOCs), phenanthrene and naphthalene, to kaolinite and sorbed surfactants was studied to evaluate the feasibility of surfactant-enhanced remediation (SER) of contaminated subsurface systems. Sorbed surfactant partition coefficients. $K_ss$, showed a strong dependence on the surfactant sorption isotherms at low sorbed surfactant levels $K_ss$ values were at their highest and then decreased with increasing surfactant sorption densities. $K_ss$ values for SDS were always larger than corresponding $K_mic$values. For Tween 80, however. $K_ss$ values $K_mic$ were higher than $K_mic$ values only at the lower sorbed surfactant densities. HOC distribution between immobile and mobile phases varied with surfactant dose distribution coefficients increased initially with increasing surfactant concentrations and then decreased at higher doses. This observation shows directly the competition between sorbed and micellar surfactants for HOC partitioning. Overall results of this study demonstrate that surfactant sorption to the solid phase can lead to increases in HOC retardation in some SER applications. Therefore, before an SER process is selected, appropriate consideration of surfactant sorption and HOC partitioning to immobile versus mobile phases pertinent to a specific subsurface system must be contemplated.

  • PDF

Treatment of Food Garbage Using a Treatment Reactor and Microbial Consortium (발효소멸기를 이용한 음식물 쓰레기의 감량 및 악취제거)

  • Koh, Rae-Hyun;Lee, Kang-Hyoung;Yoo, Jin-Soo;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Disposal of food garbage in most large cities is very troublesome task. To date, microbiological treatment has been received an attention as a garbage decomposition process. In this study, the inoculation effect of some cellulase, amylase and protease-producing bacteria and photosynthetic bacteria on food garbage treatment was examined. They were added into a treatment reactor specially designed in this study together with food garbage and incubated in various conditions for 15 days and the removals of food garbage and foul smell produced during the treatment were analyzed. Average decomposition percentages of the inoculated food garbage in treatment reactor were 11 and 18.8% under intermittent aeration (once in a day) and continuous aeration conditions (2 L/min), respectively, and these were higher than removal percentages in the corresponding uninoculated reactors,3.4 and 13.8%. Optimal pH and temperature for food garbage decomposition by inoculated bacteria were pH 7.0 and $30^{\circ}C$. Maximal decomposition percentage in the inoculated food garbage was 35% under the optimal condition (pH 7, $30^{\circ}C$, and continuous aeration). The malodor compounds generated from food garbage treatment such as complex foul smell and sulfur compounds were effectively reduced about 84% and 25.5%, respectively, with a biofilter composed of purple nonsulfur bacteria trapped in sponge. This decomposing capability of food garbage by these bacteria can be utilized for the rapid and efficient treatment of food garbage.

Formation of Hydrogen Peroxide by the Ozonation of Aqueous Humic Acid (수중 부식산의 오존처리시 생성되는 과산화수소의 농도 변화에 대한 연구)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.659-665
    • /
    • 2000
  • The changes in $UV_{254}$ and concentrations of $H_2O_2$ formed by ozonation of aqueous humic acid in ozone/high pH, peroxone process and in the presence of radical scavenger, $HCO_3{^-}$ were investigated. This study confirmed that the formation of $H_2O_2$ by ozonation may undergo different reaction pathways compared to those of $UV_{254}$ reduction in the degradation of the humic acid. The concentration of $H_2O_2$ produced by ozonation was found to be increased with decreasing pH of the sample solution due to the higher stability of ozone molecules at acidic conditions. On the while, $UV_{254}$ reduction was found to be higher at alkaline conditions or larger amount of $H_2O_2$ additions as a radical promoter in which the producing of ${\cdot}OH$, ${\cdot}HO_2$ radicals can be more favorable. From the results, it has been suggested that the formation of $H_2O_2$ by ozonation depends mainly on the direct reactions of ozone with humic acid molecules, while $UV_{254}$ reduction is affected by both the indirect reactions of the radicals and direct reactions of ozone with humic acid.

  • PDF

The Separation of Particulate within PFC Decontamination Wastewater Generated by PFC Decontamination (PFC 제염 후 발생된 제염폐액 내 오염입자의 제거)

  • Kim Gye-Nam;Lee Sung-Yeol;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho;narayan M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.32-39
    • /
    • 2005
  • When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was $0.1{\sim}10{\mu}m$. Hot particulate of more than $2{\mu}m$ in PFC contamination wastewater was removed by first filter and then hot particulate of more than $0.2{\mu}m$ was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was $95{\sim}97\%$. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate $H_2$ gas in alpha radioactivity environment.

  • PDF

Evaluation of Chemical Pre-treatment for the Optimization of CO2 Fixatiom Using by Carbonation Reaction with Serpentine (이산화탄소 광물고정화 효율 증가를 위한 사문석의 화학적 전처리에 관한 연구)

  • Jang, Na Hyung;Shim, Hyun Min;Hua, Xu Li;Kim, Hyung Teak
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.526-532
    • /
    • 2008
  • The proposed $CO_2$ storage technology in the present study is a one-step sequestration process that stabilizes $CO_2$ in a reactor with Serpentine. The advantage of this technology is associated with its high stability of final product so that the entire system is recognized as permanent environment-friendly $CO_2$ removal method. Since the sequestration reaction mechanisms are generally understood that carbonation reaction proceeds with very slow rate, so that pretreatment method to increases reaction rate of $CO_2$ carbonation reaction should be developed. To increase the reactivity of Serpentine with $CO_2$, two different methods of pretreatment are carried out in the present investigation. One is heat-treatment, the other is chemical pretreatment. In this study, only chemical pretreatment is considered leaching method of magnesium from Serpentine using sulfuric acid at the various reaction temperatures, times, and acid concentrations. Experimental results illustrated that pretreatment by sulfuric acid increases surface area of serpentine from $11.1209m^2/g$ to $98.7903m^2/g$ and extracts magnesium compounds. Single variable experiment demonstrated the enhancements of magnesium extraction with increased reaction temperature and time. Amount of magnesium extraction is obtained by using the data of ICP-AES as maximum extraction condition of magnesium is 2 M acid solution, $75^{\circ}C$ and 1hr. After performing chemical pretreatment, carbonation yield increased from 23.24% to 46.30% of weight.

Determination of Processing Parameters Affecting the Conversion and Thermal Stability of Photocurable Acrylate-based Binder (아크릴계 광바인더의 전환율과 열안정성 향상을 위한 공정변수 결정)

  • Kim, Byungchul;Seo, Dong Hak;Chae, Heon-Seung;Shin, Seunghan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • Photocurable binder for a transparent glass fiber composite was prepared with alicyclic methacrylate and fluorene-based diacrylate. ANOVA (analysis of variance) analysis was used to know main factors affecting the conversion of photocurable binder. It showed radiation intensity and photoinitiator (PI) concentration were main factors. The conversion of photocurable binder was simply increased with radiation intensity. Its increment however was abated with increasing PI concentration. We found that average conversion of the binder measured by FTIR-ATR was 87% when it was exposed to $5J/cm^2$ of UV dose with 5 wt% of PI. Oxime ester type PI was very effective to get a high degree of conversion, but it caused a yellowing problem. Owing to post-baking process, UV cured film showed an improved thermal stability by increase of conversion and removal of volatile organic compounds. TG% at $260^{\circ}C$ of film cured with 5 wt% of PI (TPO+MBF) and $5J/cm^2$ of UV radiation increased from 95.4 to 99.0% by post-baking at $230^{\circ}C$ for 5 min.

Characteristic Evaluation of SCR catalyst using Aluminum dross (알루미늄 폐드로스를 활용한 SCR 탈질촉매 제조 및 특성평가)

  • Bae, Min A;Kim, Hong Dae;Lee, Man Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4672-4678
    • /
    • 2013
  • Aluminum dross is formation at the surface of the molten metal as the latter reacts with the furnace atmosphere and it was an unavoidable by-product of the aluminum production process. However aluminum dross was usually landfilled or disposed without treatment, causing much environmental damage. The purpose of this study is to investigate the possibility of ceramic catalyst support using recycled Al dross. The recycled Al dross was made into SCR catalyst by mixing with $WO_3$, $V_2O_5$ and $TiO_2$. The $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst was observed with XRF, XRD and BET. $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR strength was measured by Universal Testing Machine(UTM). As the added $Al_2O_3$, streagth is increased. And the NOx removal activity was observed by MR(Micro-Reactor). The temperatures ranging from $350^{\circ}C$ and $400^{\circ}C$, $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst De-NOx performance result of showed excellent activity over 90% at application condition.