• Title/Summary/Keyword: Removal Amount

Search Result 1,442, Processing Time 0.071 seconds

Synthesis of Iron-loaded Zeolites for Removal of Ammonium and Phosphate from Aqueous Solutions

  • Kim, Kwang Soo;Park, Jung O;Nam, Sang Chul
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.267-276
    • /
    • 2013
  • This study presents a comparison of different protocols for the synthesis of iron-loaded zeolites, and the results of their application, as well as that of zeolite-A (Z-A), to the removal of ammonium and phosphate from aqueous media. Zeolites prepared by three methods were evaluated: iron-incorporated zeolites (IIZ), iron-exchanged zeolites (IEZ), and iron-calcined zeolites (ICZ). The optimal iron content for preparing of IIZ, as determined via scanning electron microscopy and X-ray photoelectron spectroscopy analyses, expressed as molar ratio of $SiO_2:Al_2O_3:Fe$, was below 0.05. Ammonia removal revealed that the iron-loaded zeolites have a higher removal capacity than that of Z-A due, not only to ion-exchange phenomena, but also via adsorption. Greater phosphate removal was achieved with IEZ than with ICZ; additionally, no sludge production was observed in this heterogeneous reaction, even though the coagulation process is generally accompanied by the production of a large amount of undesired chemical sludge. This study demonstrates that the developed synthetic iron-loaded zeolites can be applied as a heterogeneous nutrient-removal materials with no sludge production.

A Study on the Removal of Algae by Coagulation and Sedimentation in the Rew Water of the Nakdong River (낙동강 원수내 조류의 응집 침전에 의한 제거에 관한 연구)

  • 이진희;김영주
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.113-117
    • /
    • 2001
  • This study was conducted to investigate the effect of the prechlorination on algal removal by application of a varying amount of different coagulants, such as LAC, PAC, PACS following the process of coagulation and sedimentation of algae in the Nakdong River. The samples used as a source for the raw water of the Nakdong River were collected from the D Water Purification Plant in Taegu city. With the application of the process of prechlorination, the removal rate of the algae was increased from 10~25% for Synedra spp., 20~35% for diatoms and 4~17% for turbidity. Generally, the removal rate of the algae was increased with the increase of the concentration of the coagulants. The PAC and PACS showed 5% higher removal rate for turbidity as compared to the LAS. On the hand, LAS showed 12% higher removal rate for Synedra spp. as compared to the PAC and PACS. The variations in the removal rate of diatoms with the change of coagulant were not significant. In conclusion, the application of LAS, polymeric coagulant and chlorination for at least 20 minutes could be considered as a reliable treatment process for the removal of source water containing a variety of algae.

  • PDF

Phosphorus removal by lime-natural mineral dissolved solutions

  • Joohyun, Kim;Sunho, Yoon;Jueun, Jung;Sungjun, Bae
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In previous studies, solely ferric (Fe3+) and calcium (Ca2+) ions were commonly used for removal of PO4-P (considered as T-P in this study) in wastewater via chemical precipitation. Herein, the removal of total phosphorus (T-P) in wastewater was performed using various mineral and lime dissolved solutions. The dissolution kinetics of different minerals (feldspar, olivine, elvan, illite, sericite, and zeolite) and lime was compared and used their solutions for T-P removal of real wastewater. The highest T-P removal (almost 90%) was obtained by the lime dissolved solution and followed by zeolite, illite, feldspar, and others. We observed a significant co-relationship (R of 0.96) between the amount of initial Ca2+ and T-P removal. This was induced by formation of hydroxyapatite-like mineral via Ca-P precipitation reaction at high pH solution. Furthermore, additional removal of suspended solid (SS) and chemical oxygen demand (COD) was achieved by only lime dissolved solution. Finally, the lime-feldspar dissolved solutions were prepared at different ratios (10-50%), which showed a successive T-P removal up to two times by samples of 40 and 50%.

Break Point Chlorination (BPC) Characteristics for Heavy Metals Removal in Plating Wastewater Treatment (염소산화공정을 이용한 도금폐수의 중금속 제거 특성)

  • Jung, Byung-Gil;Lee, Seung-Won;Yun, Kwon-Gam;Jung, Jin-Hee;Kim, Jeong-Woong;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1055-1064
    • /
    • 2020
  • In this research, heavy metals and T-P removal characteristics of plated wastewater are derived using BPC(Break Point Chlorination) process. AA sedimentation pond outflow(Influence) was evaluated for the removal efficiency of heavy metal(Ni) and T-P at a reaction time of 25 minutes by NaOCl input volume(9, 11, 13 and 15 mL). In the case, the higher the NaOCl input volumes, the higher the ORP values were maintained and the higher the removal efficiency tended to be. On the other hand, T-P was judged to have a low relationship between the ORP value and the removal efficiency. In addition, the efficiency of removal heavy metals and T-P in the plated wastewater by injecting 10 mL, 15 mL, 20 mL and 25 mL NaOCl, increased as the amount of NaOCl injected increased, the amount of NaOH input for pH increased. It was found that suspended solid in effluence also increased. It was also observed that the color of the plating wastewater changed from yellowish green to green to charcoal gray to black as the amount of NaOCl injected increased. Treatment characteristics of the reaction time, the longer the reaction time with the substance to be treated after the input of NaOCl, the more the heavy metal removal efficiency tended to increase. Through XRF analysis of the sludge, the constituents in the sludge such as NaCNO, CNCl, Na3PO4, CrO4, 2Na2CrO4 and 2NaNO3 will be analyzed in detail, and the mechanisms of the reaction between the plated wastewater and the complex compound will be elucidated.

Estimating Equipment and vehicle Demands for Snow Removal Tasks by Road Snow Removal Scenarios (도로 제설 시나리오별 소요 제설장비 및 차량 추정에 관한 연구)

  • Kim, Heejae;Kim, Sunyoung;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.199-212
    • /
    • 2017
  • Rapid roadway snow removal is significantly important due to difficult occurrence estimation of heavy snowfall disasters by global warming and climate change. Local governments of S. Korea have snow removal equipments and vehicles based on past experiences without considering snowfall and roadway characteristics. The objective of this research is to develop the demand estimation procedure for snow removal equipments and vehicles based on regional snowfall and roadway characteristics. This research first classifies regional snowfall characteristics using KMO's ten-year snowfall data. Second, roadway snow removal length is computed for local governments. Real possession data is compared with demand estimation of snow removal equipments & vehicles for each local government with roadway snow removal scenarios. Finally, required demands of snow removal equipments & vehicles are predicted by concerning regional snowfall amount and required snow removal hours. Results from this research are used for developing heavy snowfall disaster management policies for optimal demands and snow removal routes of 229 local governments.

Effect of Metal Removal and Initial Residual Stress on Contact Fatigue Life (초기 잔류응력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Hur Hun-Mu;Goo Byeong-Choon;Choi Jae-Boong;Kim Young-Jin;Seo Jung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.341-349
    • /
    • 2005
  • Damage often occurs on the surface of railway wheel by wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue life by the metal removal of the contact surface were shown by many researchers, but it has not explained precisely why fatigue life increases or decreases. In this study, the effect of metal removal depth on the contact fatigue life for railway wheel has been evaluated by applying finite element analysis. It has been revealed that the residual stress and the plastic flow are the main factors determining the fatigue life. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. It has been found that the initial residual stress determines the amount of metal removal depth. Also, the effects of the initial residual stress and metal removal on the contact fatigue lift has been estimated, and an equation is proposed to decide the optimal metal removal depth for maximizing the contact fatigue life.

Comparable Influencing Factors to evaluate the Phosphate Removal on the Batch and the fix-bed Column by Converter Slag (회분식과 연속흐름 칼럼에서 전로슬래그에 의한 인제거 영향에 미치는 요소에 관한 연구)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.565-573
    • /
    • 2015
  • The influencing factors to remove phosphate were evaluated by converter slag (CS). Experiments were performed by batch tests using different CS sizes and column test. Solutions were prepared at the different pH and concentrations. The maximum removal efficiency was obtained over 98% with the finest particle size, $CS_a$ within 2 hours in batch tests. The removal efficiency was increased in the order of decreasing size with same amount of CS for any pH of solutions. The adsorption data were well fitted to Freundlich isotherm. From the column experiment, the specific factors were revealed that the breakthrough removal capacity (BRC) $x_b/m_{cs}$, was decreased by increasing the influent concentration. The breakthrough time, tb was lasted shorter as increasing the influent concentration. The pH drop simultaneously led to lower BRC drop during the experimental hours. The relation between the breakthrough time and the BRC to influent concentration was shown in the logarithmic decrease. Results suggested that the large surface area of CS possessed a great potential for adsorptive phosphate removal. Consequently particle size and initial concentration played the major influencing factors in phosphate removal by converter slag.

Removal of Natural Organic Matter by Mixing Coagulants in Coagulation Process (응집공정에서 혼합응집제 주입에 의한 자연유기물질의 제거)

  • 명복태;우달식;최종현;이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.60-66
    • /
    • 2001
  • Natural organic matters(NOMs) are found everywhere such as soil, surface and ground waters and consist of both humic and nonhumic components, and their heterogeneith makes each source unique. This study was carried to evaluate the removal characteristics of NOMs by mixing coagulants and the variation of apparent molecular weight distribution(AMWD) in coagulation process. Ratio of optimum coagulants dosage for removal of DOC and turbidity by mixing coagulants was 1.83 mM F $e^{3+}$/mM $Al^{3+}$. DOC removal increased at lower pH. The pH6 control focused on the removal of organic matters could reduce the amount of coagulant consumption by 2 to 3 times based on the pH8.5 of natural water. The dissolved organic matters in the natural water from the mid-stream of Han River were composed of the low molecular weight(LMW,<1 K) of 59.7%, and the medium and high molecular weight(M.HMW, 1~30 K) of 40.3%, respectively. At pH6, the DOC removal efficiencies of LMW(<1 K) and M.HMW(1~30 K) in coagulation process were 27~35%, 62~72%, respectively. The fraction smaller than 1 K was not eliminated to a noticeable degree, while the fraction of 1~30 K was relatively well removed. In conclustion, mixing coagulants were fairly effective in the removal of natural organic matter.r.

  • PDF

Prediction of removal percentage and adsorption capacity of activated red mud for removal of cyanide by artificial neural network

  • Deihimi, Nazanin;Irannajad, Mehdi;Rezai, Bahram
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.273-281
    • /
    • 2018
  • In this study, the activated red mud was used as a new and appropriate adsorbent for the removal of ferrocyanide and ferricyanide from aqueous solution. Predicting the removal percentage and adsorption capacity of ferro-ferricyanide by activated red mud during the adsorption process is necessary which has been done by modeling and simulation. The artificial neural network (ANN) was used to develop new models for the predictions. A back propagation algorithm model was trained to develop a predictive model. The effective variables including pH, absorbent amount, absorbent type, ionic strength, stirring rate, time, adsorbate type, and adsorbate dosage were considered as inputs of the models. The correlation coefficient value ($R^2$) and root mean square error (RMSE) values of the testing data for the removal percentage and adsorption capacity using ANN models were 0.8560, 12.5667, 0.9329, and 10.8117, respectively. The results showed that the proposed ANN models can be used to predict the removal percentage and adsorption capacity of activated red mud for the removal of ferrocyanide and ferricyanide with reasonable error.

The effect of HRT, current density, and packing ratio on nitrate nitrogen removal efficiency and current efficiency in BRM-BER (고정상 담체를 충진한 BER에서 HRT, 전류밀도 및 담체 충진율 변화가 질산성 질소 제거효율과 전류이용효율에 미치는 영향)

  • Whang, Gye-Dae;Lee, Sang-Keun;Sung, Hae-Chang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • BER at different packing ratios of bio-ring media(BRM) was tested to investigate the effect of varying hydraulic retention time (HRT) and current density on the nitrate removal and current efficiency. In the preliminary batch mode experiment of BERs, current density was applied at 2.0 A/$m^2$, 4.0 A/$m^2$, 4.8 A/$m^2$, which correspond to the designation of reactor #1, #2, #3, respectively. The reactor #2 showed a highest nitrate removal rate of 162.0 mg $NO_3{^-}$-N/L/d, and the kinetics of nitrate removal rate was defined as the Zero order reaction. In the primary experiment of BERs, four BERs packed with BRM were operated in varying HRT and current, and the packing ratios of reactor #1, #2, #3 and #4 were 0%, 8%, 16%, 24%. respectively. This results of the experiments indicated that the nitrate removal rate and current efficiency were increased significantly cause of growing of autotrophic denitrification microorganisms on the surface of cathode and media by increasing of the current density and decreasing of HRT. However, The decreasing of nitrate removal rate and current efficiencies were observed in the condition of HRT of 5.25 hr and 4.8 A/$m^2$ of current density. With more increasing current density and decreasing of HRT, the hydrogen inhibition occurred at the surface of cathode. Moreover, nitrate removal rate by autotrophic denitrification microorganisms attached on the media surface was observed to be limited by no longer increasing dissolved hydrogen concentration of each reactor. In conclusion, the highest nitrate nitrogen removal and current efficiency could be achieved when the BER was operated at the conditions of 7 hr HRT, current density of 4.0 A/$m^2$, and 16% packing ratio. And it was found that the amount of nitrate removal by microorganisms attached on the surface of cathode and media (BRM) was 178.2 mg/L and 52.2 mg/L respectively. and the amount of nitrate removal per MLVSS was 0.435 g $NO_3{^-}$-N/g $MLVSS{\cdot}d$ and 0.336 $NO_3{^-}$-N/g $MLVSS{\cdot}d$.