• Title/Summary/Keyword: Removal Amount

Search Result 1,450, Processing Time 0.025 seconds

Improvement of biosand filter embedded with ferric-manganese-silica oxide adsorbent to remove arsenic in the developing countries (개발도상국에서 Hybrid Ferric-Manganese-Silica Oxide를 적용한 비소 제거용 정수 BSFilter 적정기술개발)

  • Jeong, Ingyu;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.641-648
    • /
    • 2013
  • Arsenic (As) contamination in drinking water is severe problem for about 100 million people who live in Bangladesh, Cambodia, Nepal, India, Vietnam, Myanmar, Mongolia, and Ethiopia etc. Chronic doses cause skin cancer, blackfoot disease, and cardiac damage. Even though the biosand filter (BSF) is popular in many developing countries, it could not remove effectively hazardous ions as As. Adsorbent is effective and feasible to reduce As. In this study the improved biosand filter (iBSF) was embedded with adsorbent, was tested to evaluate As removal as well as organic removal. In 20 days removal of turbidity, bacteria, and $UV_{254}$ have shown 60-95 % removal. Arsenic was removed more than 99.9 % in the columns embedded with silica oxides of ferric manganese ($FM{\alpha}$) while 5.8 ~ 38.3 % in columns without $FM{\alpha}$. Isotherm test showed that average amount of the adsorbed arsenic on the oxides was 0.56 mg/G.

Effective machine learning-based haze removal technique using haze-related features (안개관련 특징을 이용한 효과적인 머신러닝 기반 안개제거 기법)

  • Lee, Ju-Hee;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • In harsh environments such as fog or fine dust, the cameras' detection ability for object recognition may significantly decrease. In order to accurately obtain important information even in bad weather, fog removal algorithms are necessarily required. Research has been conducted in various ways, such as computer vision/data-based fog removal technology. In those techniques, estimating the amount of fog through the input image's depth information is an important procedure. In this paper, a linear model is presented under the assumption that the image dark channel dictionary, saturation ∗ value, and sharpness characteristics are linearly related to depth information. The proposed method of haze removal through a linear model shows the superiority of algorithm performance in quantitative numerical evaluation.

Effect of Cut-off Intervals on Nutrients Removal Efficiency in Hydrophytes at the Artificial Vegetation Island (인공수초재배섬에서 수생식물 지상부 절취주기별 수중영양염류 제거효율)

  • Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae;Yun, Seok-Hwan;Jeon, Nam-Hui
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.221-226
    • /
    • 2009
  • We investigated the most effective cutting interval for underwater nutrient removal through cut off the emergent part of hydrophytes at artificial vegetation island (AVR) which was installed for the purpose of water quality improvement in Lake Paldang. We divided the planting area of Phragmites japonica into three parts according to the cutting intervals. The shoot height and relative growth rate of P. japonica, nutrient contents and biomass of cut off P. japonica were measured at each cutting interval. The amount of nutrients which were removed through cut off at each cutting interval was calculated. P. japonica showed full growth, 80% and 60% of full growth before first cut off at three-months, two-months and one-month cutting interval condition respectively. Three-month cutting interval condition showed the largest biomass of cut off P. japonica and one-month cutting interval condition showed the least. However the cut off P. japonica showed the highest content of nutrients at one-month cutting interval condition and the least at three-month cutting interval condition. The amount of phosphorus and nitrogen removal at two-month cutting off condition is the largest among three cutting interval conditions indicating that cut off the emergent part of P. japonica every two months is the most effective to remove the nutrients from water at AVR in eutrophic lakes.

Wastewater Treatment Using Ultrafiltration (UF) and Reverse Osmosis (RO) Process (침지형 한외여과 막공법과 역삼투 공법을 이용한 하.폐수처리)

  • Choi, H.J.;Park, Y.J.;Lee, S.M.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.678-683
    • /
    • 2012
  • One of alternatives to solve the global water shortages is the reuse of wastewater. The aim of this study was to evaluate whether it can be reused for industrial water from wastewater in "A" City with ultrafiltration (UF) and reverse osmosis (RO) process. The results obtained in this study were that the inorganics such as Na, Mg, Cl, Ca, Mn, $PO_4$, $SO_4$, etc. were removed with high treatment efficiency (more than 97%), respectively. However, the removal of $NH_4$-N, TN, $NO_3$-N, BOD was found to be 35.71%, 85.21%, 87.05% and 56%, respectively. The removal efficiency of nutrients was relatively low compared to other metal ions. Despite low nutrients removal, the treated wastewater is recommended to reuse, because the nutrient contents in influent from the secondary wastewater treatment plant were small amount. In addition, all other metrics in the wastewater were found to be lower amount than wastewater reuse criteria. Therefore, the wastewater treated by UF-RO could be sufficient to reuse for industrial waster.

Synthesis and Phosphorus Adsorption Characteristics of Zirconium Magnetic Adsorbent Having Magnetic Separation Capability (자기분리가 가능한 지르코늄 자성 흡착제의 합성과 인 흡착 특성)

  • Lim, Dae-Seok;Kim, Yeon-Hyung;Kim, Dong-Rak;Lee, Tae-Gu;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.431-442
    • /
    • 2012
  • The purpose of this study, is to separate magnetic separation devices using permanent magnets by using magnetization characteristics remaining in treated water after adsorption and synthesizing phosphorus adsorbent capable of magnetic separation for efficient removal of phosphorus. The synthesis of the adsorbent which set Zirconium(Zr) having high friendly features for phosphorus as an element, and by synthesizing Iron Oxide($Fe_3O_4$, another name of $Fe_3O_4$ is magnetite) being able to grant magnetism to Zirconium Sulfate($Zr(SO_4)_2$), zirconium magnetic adsorbent(ZM) were manufactured. In order to consider the phosphorus adsorption characteristics of adsorbent ZM, batch adsorption experiment was performed, and based on the results, pH effect, adsorption isotherm, adsorption kinetics, and magnetic separation have been explore. As the experiment result, adsorbent ZM showed a tendency that the adsorption number was decreased rapidly at pH 13; however, it was showed a high amount of phosphorus removal in other range and it showed the highest amount of phosphorus removal in pH 6 of neutral range. In addtion, the Langmuir adsorption isotherm model is matched well, and D-R adsorption isotherm model is ranged 14.43kJ/mol indicating ion exchange mechanism. The result shown adsorption kinetics match well to the Pseudo-second-order kinetic model. The adsorbent ZM's capablility of regenerating NaOH and $H_2SO_4$, was high selectivity on the phosphorus without impacts on the other anions. The results of applying the treated water after adsorption of phosphorus to the magnetic separation device by using permanent magnets, shows that capture of the adsorbent by the magnetization filter was perfect. And they show the possibility of utilization on the phosphorus removal in water.

Assessment of Timber Harvest in Tropical Rainforest Ecosystem of South West Nigeria and Its Implication on Carbon Sequestration

  • Adekunle, Victor A.;Lawal, Amadu;Olagoke, Adewole O.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Timber harvest in natural forests and its implications on carbon sequestration were investigated in the Southwestern Nigeria. Data on timber harvest from forest estates for a 3-year period were collected from the official record of States' Forestry Department. The data registered the species, volume and number of timbers exploited during the study period. The data were analyzed accordingly for rate of timber harvest and carbon value of the exploited timbers using existing biomass functions. Values were compared for significant differences among states using one way analysis of variance. The results showed that the most exploited logs, in terms of volume and number of trees, have the highest amount of carbon removal. There was a variation in type of timber species being exploited from each state. The total number of harvested trees from Oyo, Ondo, Ogun, Ekiti and Osun were estimated at 100,205; 111,789; 753; 15,884 and 18,153 respectively. Total quantity of carbon removed for the 3-year period stood at 2.3 million metric tons, and this translated to 8.4 million metric tons of $CO_2$. The annual carbon and $CO_2$ removal therefore were estimated at 760,120.73 tons and 2.8 million tons/ year respectively. There were significant differences (p<0.05) in the amount of $CO_2$ removed from the five states. Based on our result, we inferred that there is increasing pressure on economic tree species and it is plausible that they are becoming scarce from the forests in Southwestern Nigeria.. If the present rate of log removal is not controlled, forests could become carbon source rather than carbon sink and the on biological conservation, wood availability and climate change may turn out grave. For the forest to perform its environmental role as carbon sink, urgent conservation measures and logging policies are needed to be put in place.

Adsorption Characteristics of Granular Activated Carbon Filter Used for Drinking Water Purifier (정수기용 입상활성탄소 필터의 흡착특성에 관한 고찰)

  • Baek, Young-Man;Park, Je-Chul;Kim, Hyung-Jin
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.899-905
    • /
    • 2008
  • Quality test for activated carbon(AC) filter used for drinking water purifier is now an obligatory test and the standard material for valid purifying amount in water purifier performance test has been changed from residual chlorine to chloroform according to the notice of Ministry of Environment in 2006. Therefore, this study aimed to compare the ingredients of AC filters by confirming chloroform removal rate of AC filter and conducting 4 adsorption tests (Iodine, methylene blue decolorization, phenol value, ADS value) for AC filters provided by manufacturers. With water pressure of $1kgf/cm^2$, 1,500 liters of prepared inflow went through to check chloroform removal rate. As a result, product with removal rate of below 60% from all products. On the other hand, 4 adsorption tests were conducted for filters in the market and filters from manufacturers. None of the products satisfied all 4 tests. In particular, they showed great shortage to the standard in phenol value and ADS value test. However, manufacturers' filter showed much better performance than filters in the market. Also, the result of valid purifying amount test for each of five products of appropriate product and inappropriate product based on filter quality test showed average 4,440 liters for appropriate product and average 2,620 liters for inappropriate product. According to the result, it is shown that the filter with good adsorption also had good chloroform removal efficiency and adsorption efficiency. Therefore, it is expected that customers can screen good quality product through obligatory conduct of filter quality test. However, it is considered that complementation in system is required for future inspection.

Utilization of Natural Zeolite for Removal of $NH_3$ Gas (($NH_3$ 가스 제거를 위한 천연 지오라이트의 이용)

  • Lee, Dong-Hoon;Choi, Jyung;Park, Moung-Sub
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.327-332
    • /
    • 1997
  • This study was conducted to find out the effect for removal of $NH_3$ gas, one of the offensive odor. The removal efficiencies of $NH_3$ gas through zeolie column increased with the decreased percolation velocity. The effect of zeolite colum in removing $NH_3$ gas was influenced by the water content of zeolite and the added amount of zeolite, but was not influenced by the setting method of zeolite. The $NH_3$ gas removing sequence of saturated cation species on zeolite was in order of Ca->Na->$NH_4$ ->Natural->K-zeolite. Consequently the effect of zeolite on $NH_3$ gas removal efficiency is consided by the water content, added amount and saturated cation of the zeolite.

  • PDF

Removal of Cochlodinium polykrikoides using the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물을 이용한 Cochlodinium polykrikoides 제거)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae;Ko, Seong-Jeong;Hwang, Eung-Ju;Jo, Q-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • In the present study, experiments have been performed to investigate the possibility of removing Cochlodinium polykrikoides using the dredged sediment from a coastal fishery and then to derive the optimal conditions; the amount and particle size of dredged sediment besprinkled into water, the thermal treatment, the types and amounts of additives, and the depth profile of Cochlodinium polykrikoides. Results showed that the optimal amount of dredged sediment besprinkled into water was 6~10 g/L, and the removal efficiency of Cochlodinium polykrikoides after the reaction time for 60 min was 73~93%. Note that, in the real sea water, it is necessary to besprinkle 6~10 $kg/m^3$ of dry dredged sediment on a unit area (1 $m^2$). With decreasing particle size, Cochlodinium polykrikoides could be more efficiently removed. The removal efficiency was 93% with the dredged sediment smaller than 100 ${\mu}m$, whereas it was 51% with that of 100 ${\mu}m$ ${\mu}m$. Since most of dredged sediment (over 90%) was smaller than 100 ${\mu}m$, high efficiency could be obtained by besprinkling only the dredged sediment without pre-treatment. CaO was found to be an effective additive in promoting the removal efficiency (up to 99%). The optimal amount of additive was 5~10%, however, it was necessary to use as small amount of an additive as possible in order to avoid the sharp increase in pH. The removal efficiency increased with increasing depth profile of Cochlodinium polykrikoides. The removal efficiency was 83% at 5 cm depth, whereas it was 93% at 50 cm depth. In the sea water, red tide occurred within 3 m depth, and furthermore most Cochlodinium polykrikoides existed within 1 m depth. It was, therefore, expected that higher removal efficiency of Cochlodinium polykrikoides could be obtained when the dredged sediment was besprinkled into the sea water. The removal efficiency of Cochlodinium polykrikoides was up to 93% when the dredged sediment (<100 ${\mu}m$) was besprinkled into water at the ratio of 10 g/L. This result was comparable to that obtained with loess (90~97%). All the results in the present study indicated that the dredged sediment from a coastal fishery could be successfully used as a substitute of loess for removing the red tide alga.

Nitrogen and Phosphorus Removal from Plating Wastewater Using the Soil Reactor (토양 반응조를 이용한 도금폐수 중의 질소 및 인 제거)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Shin, Dae-Yun;Im, Byung-Gab;Jeon, Gee-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2009
  • A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% ${NH_4}^{+}-N$ removal efficiency) and denitrification (84.3% ${NO_3}^{-}-N$ removal) in the soil reactor, respectively. In continuous removal, the influent ${NH_4}^{+}-N$ was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of ${NH_4}^{+}-N$ was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of ${NO_3}^{-}-N$ significantly increased. The ${NO_3}^{-}-N$ removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was $3.3{\times}10^5\;MPN/g$ soil at a depth of $1{\sim}10\;cm$ and $3.3{\times}10^6\;MPN/g$ soil at a depth of $10{\sim}20\;cm$, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.